Supplemental Materials: Remanent magnetization: signature of Many-Body Localization in quantum antiferromagnets

DERIVATION OF EQ. (4)

The operator in Eq. (3) in the main text is rewritten as

$$
\begin{equation*}
\sum_{\alpha} P_{\alpha} \sigma_{j}^{z} P_{\alpha}=\sum_{i_{1}= \pm 1} \sum_{i_{2}= \pm 1} \cdots \sum_{i_{L}= \pm 1} \prod_{k=1}^{L} P\left(i_{k}\right) \sigma_{j}^{z} \prod_{k=1}^{L} P\left(i_{k}\right) \tag{1}
\end{equation*}
$$

where we introduced the projectors:

$$
\begin{equation*}
P\left(i_{k}\right) \equiv \frac{1+i_{k} I_{k}}{2} \tag{2}
\end{equation*}
$$

To derive Eq. (4) in the main text, we make use of the following operator identities:

$$
\begin{equation*}
A B=B A+[A, B], \quad\left[A, \prod_{k=1}^{L} B_{k}\right]=\sum_{k_{1}=1}^{L}\left(\prod_{k=1}^{k_{1}-1} B_{k}\right)\left[A, B_{k_{1}}\right]\left(\prod_{k=k_{1}+1}^{L} B_{k}\right) . \tag{3}
\end{equation*}
$$

For

$$
\begin{equation*}
A^{(1)}=\sigma_{j}^{z}, \quad B^{(1)}=\prod_{k=1}^{L} B_{k}=\prod_{k=1}^{L} P\left(i_{k}\right) \tag{4}
\end{equation*}
$$

the above identities imply

$$
\begin{equation*}
\prod_{k=1}^{L} P\left(i_{k}\right) \sigma_{j}^{z} \prod_{k=1}^{L} P\left(i_{k}\right)=\prod_{k=1}^{L} P\left(i_{k}\right)\left(\sigma_{j}^{z}+\sum_{k_{1}=1}^{L}\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right] \prod_{k=k_{1}+1}^{L} P\left(i_{k}\right)\right) . \tag{5}
\end{equation*}
$$

Applying (3) once more with

$$
\begin{equation*}
A^{(2)}=\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right], \quad B^{(2)}=\prod_{k=k_{1}+1}^{L} P\left(i_{k}\right) \tag{6}
\end{equation*}
$$

yields

$$
\begin{equation*}
\prod_{k=1}^{L} P\left(i_{k}\right)\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right] \prod_{k=k_{1}+1}^{L} P\left(i_{k}\right)=\prod_{k=1}^{L} P\left(i_{k}\right)\left(\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right]+\sum_{k_{2}=k_{1}+1}^{L}\left[\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right], \frac{i_{k_{2}} I_{k_{2}}}{2}\right] \prod_{k=k_{2}+1}^{L} P\left(i_{k}\right)\right) \tag{7}
\end{equation*}
$$

Further iteration with

$$
\begin{equation*}
A^{(n)}=\left[\left[\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right], \cdots\right], \frac{i_{k_{n-1}} I_{k_{n-1}}}{2}\right], \quad B^{(n)}=\prod_{k=k_{n-1}+1}^{L} P\left(i_{k}\right) \tag{8}
\end{equation*}
$$

finally leads to

$$
\begin{equation*}
\prod_{k=1}^{L} P\left(i_{k}\right) \sigma_{j}^{z} \prod_{k=1}^{L} P\left(i_{k}\right)=\prod_{k=1}^{L} P\left(i_{k}\right)\left(\sigma_{j}^{z}+\sum_{N=1}^{L} \sum_{k_{N}>\cdots>k_{1}}\left[\left[\left[\sigma_{j}^{z}, \frac{i_{k_{1}} I_{k_{1}}}{2}\right], \cdots\right], \frac{i_{k_{N}} I_{k_{N}}}{2}\right]\right) . \tag{9}
\end{equation*}
$$

The identity (4) is established using that $i_{k} \in\{ \pm 1\}$ and that

$$
\begin{equation*}
\sum_{i_{k}= \pm 1} P\left(i_{k}\right)=\mathbb{1} \tag{10}
\end{equation*}
$$

EXPLICIT EXPRESSION FOR CONSERVED QUANTITIES

As derived in [27], the formal expression for the terms in the perturbative expansion in Eq. (6) in the main text reads:

$$
\begin{equation*}
\delta I_{k}^{(n)}=i \lim _{\eta \rightarrow 0} \int_{0}^{\infty} d \tau e^{-\eta \tau} e^{i H_{0} \tau}\left[H_{1}, \delta I_{k}^{(n-1)}\right] e^{-i H_{0} \tau}+\Delta I_{k}^{(n)} \tag{11}
\end{equation*}
$$

where in this case

$$
\begin{align*}
& H_{0}=\sum_{i}\left(h_{i} \sigma_{i}^{z}-J_{z} \sigma_{i}^{z} \sigma_{i+1}^{z}\right) \\
& H_{1}=-\sum_{i} J_{x} \sigma_{i}^{x} \sigma_{i+1}^{x} \tag{12}
\end{align*}
$$

The operator $\Delta I_{k}^{(n)}$ in (11) is a suitable polynomial in the σ_{i}^{z}, which ensures that $I_{k}^{2}=\mathbb{1}$ is satisfied at the given order in H_{1} : neglecting the $\Delta I_{k}^{(n)}$ at any order leads to a modified operator that is still conserved, although it does not have binary spectrum ± 1. At first order $n=1$, one finds that $\Delta I_{k}^{(1)}=0$, while $\delta I_{k}^{(1)}$ is given in Eq. (7) in the main text.

We now discuss how the perturbative expansion needs to be modified in presence of resonances, in order to obtain the operators $\tilde{I}_{k}, \tilde{I}_{k+1}$ in the main text. Let $k, k+1$ be the sites giving rise to a first order resonance, i.e., to a small denominator for a particular choice of τ, ρ in Eq. (9) in the main text. We aim at finding the set of spin operators that is conserved by the reduced Hamiltonian

$$
\begin{equation*}
H^{(k)}=H_{0}-J_{x} \sigma_{k}^{x} \sigma_{k+1}^{x}=H_{0}-J_{x}\left(\tilde{O}_{+}^{(k)}+\tilde{\Delta}_{+}^{(k)}\right) \equiv H_{0}+H_{1}^{(k)} \tag{13}
\end{equation*}
$$

where we introduced $\tilde{O}_{ \pm}^{(k)}=\sigma_{k}^{+} \sigma_{k+1}^{-} \pm \sigma_{k}^{-} \sigma_{k+1}^{+}$, and $\tilde{\Delta}_{ \pm}^{(k)}=\sigma_{k}^{+} \sigma_{k+1}^{+} \pm \sigma_{k}^{-} \sigma_{k+1}^{-}$. The first-order term in the perturbative expansion,

$$
\begin{equation*}
\hat{I}_{k}=\sigma_{k}^{z}+\delta I_{k}^{(1)}=\sigma_{k}^{z}+\sum_{\rho, \tau \pm 1}\left(A_{\rho \tau}^{(k)} O_{\rho \tau}^{(k)}+B_{\rho \tau}^{(k)} \Delta_{\rho \tau}^{(k)}\right) \tag{14}
\end{equation*}
$$

is exactly conserved by (13): This can be deduced from (11) setting $H_{1} \rightarrow H_{1}^{(k)}$ and $\Delta I_{k}^{(n)}=0 \quad \forall n$, noticing that $\left[H_{1}^{(k)}, \delta I_{k}^{(1)}\right]=0$ and thus that the perturbative expansion terminates at the first order. However, the operator does not square to the identity: To impose the binarity of the spectrum, it is necessary to introduce an operator $\Delta I_{k}^{(2)}$ canceling the terms $\hat{I}_{k}^{2}-\mathbb{1}$ which are of second order in J_{x}. The resulting operator $\hat{I}_{k}+\Delta I_{k}^{(2)}$ will no longer commute with $H_{1}^{(k)}$, giving rise through (11) to a full perturbative series that needs to be resummed to get the $\tilde{I}_{k}, \tilde{I}_{k+1}$.

In the case of the Hamiltonian (13), it is possible to circumvent the resummation by directly guessing the form of the operators $\tilde{I}_{k}, \tilde{I}_{k+1}$. Indeed, the terms in $\hat{I}_{k}^{2}-\mathbb{1}$ are proportional to:

$$
\begin{align*}
& \left(\sigma_{k}^{+} \sigma_{k+1}^{+}+h . c .\right)^{2}=\frac{1+\sigma_{k}^{z} \sigma_{k+1}^{z}}{2} \equiv \tilde{J}_{+}^{(k)} \\
& \left(\sigma_{k}^{+} \sigma_{k+1}^{-}+h . c .\right)^{2} \equiv \frac{1-\sigma_{k}^{z} \sigma_{k+1}^{z}}{2}=\tilde{K}_{+}^{(k)} \tag{15}
\end{align*}
$$

where we defined

$$
\begin{equation*}
\tilde{J}_{ \pm}^{(k)}=P_{1,1}^{(k)} \pm P_{-1,-1}^{(k)}, \quad \tilde{K}_{+}^{(k)}=P_{1,-1}^{(k)} \pm P_{-1,1}^{(k)} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\rho, \tau}^{(k)}=\frac{1+\rho \sigma_{k}^{z}}{2} \frac{1+\tau \sigma_{k+1}^{z}}{2} \tag{17}
\end{equation*}
$$

Exactly the same operators as in (15) are generated by the following anticommutators:

$$
\begin{align*}
& \frac{1}{2}\left\{\sigma_{k}^{z}, \tilde{K}_{-}^{(k)}\right\}=\frac{1}{2}\left\{\sigma_{k}^{z}, \frac{\sigma_{k}^{z}-\sigma_{k+1}^{z}}{2}\right\}=P_{1,-1}^{(k)}+P_{-1,1}^{(k)} \tag{18}\\
& \frac{1}{2}\left\{\sigma_{k}^{z}, \tilde{J}_{-}^{(k)}\right\}=\frac{1}{2}\left\{\sigma_{k}^{z}, \frac{\sigma_{k}^{z}+\sigma_{k+1}^{z}}{2}\right\}=P_{1,1}^{(k)}+P_{-1,-1}^{(k)}
\end{align*}
$$

This suggests to add to the \hat{I}_{k} some operators proportional to $\tilde{K}_{-}^{(k)}$ and $\tilde{J}_{-}^{(k)}$: since the latter anticommute with $\tilde{O}_{+}^{(k)}$ and $\tilde{\Delta}_{+}^{(k)}$, no additional operator is produced when squaring the sum of \hat{I}_{k} with the newly added operators; similarly, no additional operator appears when imposing conservation, given that the commutators $\left[\tilde{O}_{+}^{(k)}, \tilde{K}_{-}^{(k)}\right]$ and $\left[\tilde{\Delta}_{+}^{(k)}, \tilde{J}_{-}^{(k)}\right]$ are proportional to the commutators $\left[\sigma_{k}^{z}, \tilde{O}_{+}^{(k)}\right]$ and $\left[\sigma_{k}^{z}, \tilde{\Delta}_{+}^{(k)}\right]$, while all other commutators are zero.

Based on these observations, we introduce:

$$
\begin{equation*}
\tilde{I}_{k}=\sigma_{k}^{z}+\sum_{\rho \tau= \pm 1}\left(\tilde{A}_{\rho \tau}^{(k)} O_{\rho \tau}^{(k)}+C_{\rho \tau}^{(k)} K_{\rho \tau}^{(k)}\right)+\sum_{\rho \tau= \pm 1}\left(\tilde{B}_{\rho \tau}^{(k)} \Delta_{\rho \tau}^{(k)}+D_{\rho \tau}^{(k)} J_{\rho \tau}^{(k)}\right) \tag{19}
\end{equation*}
$$

with

$$
\begin{align*}
K_{\rho \tau}^{(k)} & =\frac{1+\rho \sigma_{k-1}^{z}}{2}\left[P_{1,-1}^{(k)}-P_{-1,1}^{(k)}\right] \frac{1+\tau \sigma_{k+2}^{z}}{2} \tag{20}\\
J_{\rho \tau}^{(k)} & =\frac{1+\rho \sigma_{k-1}^{z}}{2}\left[P_{1,1}^{(k)}-P_{-1,-1}^{(k)}\right] \frac{1+\tau \sigma_{k+2}^{z}}{2}
\end{align*}
$$

and with coefficients that are of infinite order in the resonant coupling J_{x}. Imposing $\left[\tilde{I}_{k}, H^{(k)}\right]=0$ and collecting the coefficient in front of each operator we find:

$$
\begin{align*}
& \tilde{A}_{\rho \tau}^{(k)}\left(h_{k}-h_{k+1}+J_{z}(\tau-\rho)\right)+J_{x}\left(1+C_{\rho \tau}^{(k)}\right)=0 \\
& \tilde{B}_{\rho \tau}^{(k)}\left(h_{k}+h_{k+1}-J_{z}(\tau+\rho)\right)+J_{x}\left(1+D_{\rho \tau}^{(k)}\right)=0 \tag{21}
\end{align*}
$$

from which Eqs. (9) in the main text are recovered for $C_{\rho \tau}^{(k)}=0=D_{\rho \tau}^{(k)}$. Using (15) and (18) we obtain that $\tilde{I}_{k}^{2}=\mathbb{1}$ is satisfied provided

$$
\begin{align*}
& \left(\tilde{A}_{\rho \tau}^{(k)}\right)^{2}+\left(C_{\rho \tau}^{(k)}\right)^{2}+2 C_{\rho \tau}^{(k)}=0 \\
& \left(\tilde{B}_{\rho \tau}^{(k)}\right)^{2}+\left(D_{\rho \tau}^{(k)}\right)^{2}+2 D_{\rho \tau}^{(k)}=0 \tag{22}
\end{align*}
$$

for each choice of $\tau, \rho= \pm 1$. It can be checked that Eqs.(21), (22) admit the solutions:

$$
\begin{align*}
& \tilde{A}_{\rho \tau}^{(k)}=-\frac{J_{x}}{\left(\left[h_{k}-h_{k+1}+J_{z}(\tau-\rho)\right]^{2}+J_{x}^{2}\right)^{1 / 2}}, \\
& C_{\rho \tau}^{(k)}=-1+\frac{h_{k}-h_{k+1}+J_{z}(\tau-\rho)}{\left(\left[h_{k}-h_{k+1}+J_{z}(\tau-\rho)\right]^{2}+J_{x}^{2}\right)^{1 / 2}}, \\
& \tilde{B}_{\rho \tau}^{(k)}=-\frac{J_{x}}{\left(\left[h_{k}+h_{k+1}-J_{z}(\tau+\rho)\right]^{2}+J_{x}^{2}\right)^{1 / 2}}, \tag{23}\\
& D_{\rho \tau}^{(k)}=-1+\frac{h_{k}+h_{k+1}-J_{z}(\tau+\rho)}{\left(\left[h_{k}+h_{k+1}-J_{z}(\tau+\rho)\right]^{2}+J_{x}^{2}\right)^{1 / 2}} .
\end{align*}
$$

The coefficient $\tilde{B}_{\rho \tau}^{(k)}$ is the one exploited in the main text. Similar expressions are obtained for the operator \tilde{I}_{k+1}.

SCALING OF THE IMBALANCE FOR NON-INTERACTING FERMIONS

For large J / h - behavior of $\hat{\mathcal{I}}$ in the fermionic, single-particle case can be understood by setting

$$
\begin{equation*}
\phi_{\alpha}^{2}(k)=\frac{x_{k}^{\alpha}}{\xi} e^{-\frac{\left|k-r_{\alpha}\right|}{\xi}}, \tag{24}
\end{equation*}
$$

where r_{α} denotes the localization center of the single particle wavefunction ϕ_{α}, ξ its localization length (we are neglecting its energy dependence), and the x_{k}^{α} are positive random variables of $O(1)$ that capture the fluctuations of
the squared amplitudes under the exponentially decaying envelope. Partitioning the chain into segments of length $l=\lfloor\xi\rfloor$ and approximating the x_{k}^{α} as uncorrelated variables we obtain:

$$
\begin{equation*}
\hat{\mathcal{I}} \approx \frac{1}{L} \sum_{\alpha=1}^{L}\left(\sum_{R=1}^{L / l}(-1)^{R l} \frac{e^{-\left|R-R_{\alpha}\right|}}{\xi} \sum_{k=(R-1) l}^{R l}(-1)^{k} x_{k}^{\alpha}\right)^{2} \approx \frac{1}{L} \sum_{\alpha=1}^{L}\left(\sum_{R=1}^{L / l}(-1)^{R l} \frac{e^{-\left|R-R_{\alpha}\right|}}{\sqrt{\xi}}\right)^{2} \sim \frac{c}{\xi} \sim c\left(\frac{h}{J}\right)^{2} \tag{25}
\end{equation*}
$$

where R_{α} is the block containing the localization center r_{α}, and we have used that in the weak-disorder regime $\xi \sim(J / h)^{2}[55]$.
[27] V. Ros, M. Müller, and A. Scardicchio, Nucl. Phys. B 891, 420 (2015).
[55] L. Molinari, J. Phys. A Math. Gen. 25, 513 (1992).

