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DERIVATION OF EQ. (4)

The operator in Eq. (3) in the main text is rewritten as

∑
α

Pασ
z
jPα =

∑
i1=±1

∑
i2=±1

· · ·
∑
iL=±1

L∏
k=1

P (ik) σzj

L∏
k=1

P (ik), (1)

where we introduced the projectors:

P (ik) ≡ 1 + ikIk
2

. (2)

To derive Eq. (4) in the main text, we make use of the following operator identities:

AB = BA+ [A,B] ,

[
A,

L∏
k=1

Bk

]
=

L∑
k1=1

(
k1−1∏
k=1

Bk

)
[A,Bk1 ]

(
L∏

k=k1+1

Bk

)
. (3)

For

A(1) = σzj , B(1) =

L∏
k=1

Bk =

L∏
k=1

P (ik), (4)

the above identities imply

L∏
k=1

P (ik) σzj

L∏
k=1

P (ik) =

L∏
k=1

P (ik)

(
σzj +

L∑
k1=1

[
σzj ,

ik1Ik1
2

] L∏
k=k1+1

P (ik)

)
. (5)

Applying (3) once more with

A(2) =

[
σzj ,

ik1Ik1
2

]
, B(2) =

L∏
k=k1+1

P (ik) (6)

yields

L∏
k=1

P (ik)

[
σzj ,

ik1Ik1
2

] L∏
k=k1+1

P (ik) =

L∏
k=1

P (ik)

([
σzj ,

ik1Ik1
2

]
+

L∑
k2=k1+1

[[
σzj ,

ik1Ik1
2

]
,
ik2Ik2

2

] L∏
k=k2+1

P (ik)

)
. (7)

Further iteration with

A(n) =

[[[
σzj ,

ik1Ik1
2

]
, · · ·

]
,
ikn−1

Ikn−1

2

]
, B(n) =

L∏
k=kn−1+1

P (ik) (8)

finally leads to

L∏
k=1

P (ik) σzj

L∏
k=1

P (ik) =

L∏
k=1

P (ik)

(
σzj +

L∑
N=1

∑
kN>···>k1

[[[
σzj ,

ik1Ik1
2

]
, · · ·

]
,
ikN IkN

2

])
. (9)

The identity (4) is established using that ik ∈ {±1} and that∑
ik=±1

P (ik) = 1. (10)
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EXPLICIT EXPRESSION FOR CONSERVED QUANTITIES

As derived in [27], the formal expression for the terms in the perturbative expansion in Eq. (6) in the main text
reads:

δI
(n)
k = i lim

η→0

∫ ∞
0

dτe−ητeiH0τ
[
H1, δI

(n−1)
k

]
e−iH0τ + ∆I

(n)
k , (11)

where in this case

H0 =
∑
i

(
hiσ

z
i − Jzσzi σzi+1

)
,

H1 = −
∑
i

Jxσ
x
i σ

x
i+1.

(12)

The operator ∆I
(n)
k in (11) is a suitable polynomial in the σzi , which ensures that I2k = 1 is satisfied at the given

order in H1: neglecting the ∆I
(n)
k at any order leads to a modified operator that is still conserved, although it does

not have binary spectrum ±1. At first order n = 1, one finds that ∆I
(1)
k = 0, while δI

(1)
k is given in Eq. (7) in the

main text.
We now discuss how the perturbative expansion needs to be modified in presence of resonances, in order to obtain

the operators Ĩk, Ĩk+1 in the main text. Let k, k + 1 be the sites giving rise to a first order resonance, i.e., to a small
denominator for a particular choice of τ, ρ in Eq. (9) in the main text. We aim at finding the set of spin operators
that is conserved by the reduced Hamiltonian

H(k) = H0 − Jxσxkσxk+1 = H0 − Jx
(
Õ

(k)
+ + ∆̃

(k)
+

)
≡ H0 +H

(k)
1 , (13)

where we introduced Õ
(k)
± = σ+

k σ
−
k+1±σ

−
k σ

+
k+1, and ∆̃

(k)
± = σ+

k σ
+
k+1±σ

−
k σ
−
k+1. The first-order term in the perturbative

expansion,

Îk = σzk + δI
(1)
k = σzk +

∑
ρ,τ±1

(
A(k)
ρτ O

(k)
ρτ +B(k)

ρτ ∆(k)
ρτ

)
, (14)

is exactly conserved by (13): This can be deduced from (11) setting H1 → H
(k)
1 and ∆I

(n)
k = 0 ∀n, noticing that[

H
(k)
1 , δI

(1)
k

]
= 0 and thus that the perturbative expansion terminates at the first order. However, the operator does

not square to the identity: To impose the binarity of the spectrum, it is necessary to introduce an operator ∆I
(2)
k

canceling the terms Î2k −1 which are of second order in Jx. The resulting operator Îk + ∆I
(2)
k will no longer commute

with H
(k)
1 , giving rise through (11) to a full perturbative series that needs to be resummed to get the Ĩk, Ĩk+1.

In the case of the Hamiltonian (13), it is possible to circumvent the resummation by directly guessing the form of
the operators Ĩk, Ĩk+1. Indeed, the terms in Î2k − 1 are proportional to:(

σ+
k σ

+
k+1 + h.c.

)2
=

1 + σzkσ
z
k+1

2
≡ J̃ (k)

+ ,(
σ+
k σ
−
k+1 + h.c.

)2 ≡ 1− σzkσzk+1

2
= K̃

(k)
+ ,

(15)

where we defined

J̃
(k)
± = P

(k)
1,1 ± P

(k)
−1,−1, K̃

(k)
+ = P

(k)
1,−1 ± P

(k)
−1,1, (16)

and

P (k)
ρ,τ =

1 + ρ σzk
2

1 + τ σzk+1

2
. (17)

Exactly the same operators as in (15) are generated by the following anticommutators:

1

2

{
σzk, K̃

(k)
−

}
=

1

2

{
σzk,

σzk − σzk+1

2

}
= P

(k)
1,−1 + P

(k)
−1,1,

1

2

{
σzk, J̃

(k)
−

}
=

1

2

{
σzk,

σzk + σzk+1

2

}
= P

(k)
1,1 + P

(k)
−1,−1.

(18)
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This suggests to add to the Îk some operators proportional to K̃
(k)
− and J̃

(k)
− : since the latter anticommute with

Õ
(k)
+ and ∆̃

(k)
+ , no additional operator is produced when squaring the sum of Îk with the newly added operators;

similarly, no additional operator appears when imposing conservation, given that the commutators
[
Õ

(k)
+ , K̃

(k)
−

]
and[

∆̃
(k)
+ , J̃

(k)
−

]
are proportional to the commutators

[
σzk, Õ

(k)
+

]
and

[
σzk, ∆̃

(k)
+

]
, while all other commutators are zero.

Based on these observations, we introduce:

Ĩk = σzk+
∑
ρτ=±1

(
Ã(k)
ρτ O

(k)
ρτ + C(k)

ρτ K
(k)
ρτ

)
+
∑
ρτ=±1

(
B̃(k)
ρτ ∆(k)

ρτ +D(k)
ρτ J

(k)
ρτ

)
, (19)

with

K(k)
ρτ =

1 + ρ σzk−1
2

[
P

(k)
1,−1 − P

(k)
−1,1

] 1 + τ σzk+2

2
,

J (k)
ρτ =

1 + ρ σzk−1
2

[
P

(k)
1,1 − P

(k)
−1,−1

] 1 + τ σzk+2

2
,

(20)

and with coefficients that are of infinite order in the resonant coupling Jx. Imposing
[
Ĩk, H

(k)
]

= 0 and collecting

the coefficient in front of each operator we find:

Ã(k)
ρτ (hk − hk+1 + Jz(τ − ρ)) + Jx

(
1 + C(k)

ρτ

)
= 0

B̃(k)
ρτ (hk + hk+1 − Jz(τ + ρ)) + Jx

(
1 +D(k)

ρτ

)
= 0,

(21)

from which Eqs. (9) in the main text are recovered for C
(k)
ρτ = 0 = D

(k)
ρτ . Using (15) and (18) we obtain that Ĩ2k = 1

is satisfied provided (
Ã(k)
ρτ

)2
+
(
C(k)
ρτ

)2
+ 2C(k)

ρτ = 0,(
B̃(k)
ρτ

)2
+
(
D(k)
ρτ

)2
+ 2D(k)

ρτ = 0,

(22)

for each choice of τ, ρ = ±1. It can be checked that Eqs.(21), (22) admit the solutions:

Ã(k)
ρτ = − Jx(

[hk − hk+1 + Jz(τ − ρ)]
2

+ J2
x

)1/2 ,
C(k)
ρτ = −1 +

hk − hk+1 + Jz(τ − ρ)(
[hk − hk+1 + Jz(τ − ρ)]

2
+ J2

x

)1/2 ,
B̃(k)
ρτ = − Jx(

[hk + hk+1 − Jz(τ + ρ)]
2

+ J2
x

)1/2 ,
D(k)
ρτ = −1 +

hk + hk+1 − Jz(τ + ρ)(
[hk + hk+1 − Jz(τ + ρ)]

2
+ J2

x

)1/2 .

(23)

The coefficient B̃
(k)
ρτ is the one exploited in the main text. Similar expressions are obtained for the operator Ĩk+1.

SCALING OF THE IMBALANCE FOR NON-INTERACTING FERMIONS

For large J/h- behavior of Î in the fermionic, single-particle case can be understood by setting

φ2α(k) =
xαk
ξ
e−
|k−rα|

ξ , (24)

where rα denotes the localization center of the single particle wavefunction φα, ξ its localization length (we are
neglecting its energy dependence), and the xαk are positive random variables of O(1) that capture the fluctuations of
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the squared amplitudes under the exponentially decaying envelope. Partitioning the chain into segments of length
l = bξc and approximating the xαk as uncorrelated variables we obtain:

Î ≈ 1

L

L∑
α=1

 L/l∑
R=1

(−1)R l
e−|R−Rα|

ξ

R l∑
k=(R−1)l

(−1)kxαk

2

≈ 1

L

L∑
α=1

 L/l∑
R=1

(−1)R l
e−|R−Rα|√

ξ

2

∼ c

ξ
∼ c

(
h

J

)2

, (25)

where Rα is the block containing the localization center rα, and we have used that in the weak-disorder regime
ξ ∼ (J/h)2 [55].
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