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We study how interacting localized degrees of freedom are affected by slow thermal fluctuations that change
the effective local disorder. We compute the time-averaged (annealed) conductance in the insulating regime and
find three distinct insulating phases, separated by two transitions. The first occurs between a nonresonating
insulator and an intermittent metal. The average conductance is always dominated by rare temporal fluctuations.
However, in the intermittent metal, they are so strong that the system becomes metallic for an exponentially small
fraction of the time. A second transition occurs within that phase. At stronger disorder, there is a single optimal
path providing the dominant contribution to the conductance at all times, but closer to delocalization, a transition
to a phase with fluctuating paths occurs. This last phase displays the quantum analogon of configurational chaos
in glassy systems in that thermal fluctuations induce significant changes of the dominant decay channels. While
in the insulator the annealed conductance is strictly bigger than the conductance with typical, frozen disorder,
we show that the threshold to delocalization is insensitive to whether or not thermal fluctuations are admitted.
This rules out a potential bistability, at fixed disorder, of a localized phase with suppressed internal fluctuations
and a delocalized, internally fluctuating phase.
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I. INTRODUCTION

Strong Anderson localization and its interacting analog,
many-body localization (MBL), both arise due to the disorder-
induced suppression of resonant couplings between close-by
states in configuration space. Strong disorder renders typical
energy differences between such configurations too large to
be overcome by the off-diagonal tunneling terms that con-
nect them. The sparse remaining resonances turn out to be
harmless (at least in one dimension, in the case of many-body
systems) so that localization, nonergodicity, and a resistance
that grows exponentially with system size are preserved. For
noninteracting quantum particles this has been understood al-
ready by Anderson [1], and it has been argued at various levels
of rigor for the many-body case over the last 15 years [2–4],
taking up and developing much further an initial perturbative
analysis by Fleishman and Anderson [5], cf. also [6–9] for
recent reviews. MBL has been argued to be the most robust
route to achieve ergodicity breaking (without invoking spon-
taneous symmetry breaking), to suppress long-range transport
and to avoid thermalization in isolated interacting quantum
systems [10].

The above considerations hold for typical realizations of
static disorder. It is well known, however, that rare correlated
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realizations of disorder can nevertheless exhibit delocalization
and finite transport, even though they are encountered with
vanishing probability in the thermodynamic limit. Rare opti-
mal configurations are also known to play an important role in
the transport of insulators, as they dominate the elastic trans-
mission through broad junctions [11] and they affect inelastic
hopping processes, too [12–14].

Here we go beyond this type of analysis by asking about
the role of temporal fluctuations. The dominance by rare tem-
poral fluctuations that we will find is nevertheless reminiscent
of the dominance of rare (static) transmission channels in
broad junctions, whereby different temporal realizations of
the effective disorder now take the role of the spatial position
of conduction channels, the temporal average replacing the
spatial average. In a higher-dimensional situation, temporal
and spatial inhomogeneity will be important simultaneously.
As we will see, their interplay gives rise to a new regime
where the spatially dominant channel fluctuates itself in time.

We point out that temporally fluctuating disorder can in-
duce delocalization, even if at every instance of time the
disorder realization would be classified as localizing, if it
were static. This is due to the creation of semilocal reso-
nances at different moments in time. This phenomenon has
been studied, e.g., in the context of periodically modulated
disordered Hamiltonians [15,16]: The slower the variations
the higher is the danger to encounter resonances over long
enough time windows during which adiabatic state changes
take place, which delocalize the system in the long run and

2469-9950/2021/104(9)/094205(21) 094205-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8189-8809
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.094205&domain=pdf&date_stamp=2021-09-20
https://doi.org/10.1103/PhysRevB.104.094205


VALENTINA ROS AND MARKUS MÜLLER PHYSICAL REVIEW B 104, 094205 (2021)

restore ergodicity. This mechanism poses a fundamental prob-
lem when one tries to utilize disorder-induced many-body
localization to protect topological order and anyon braiding
at finite temperature [17]. Ovadyahu has used this observation
in Refs. [18] to study the reach of long-range resonances as a
function of the excitation state of a disordered electron glass.
Those experiments suggest that the fluctuations in a sample
at equilibrium are very slow and infrequent (in contrast to
an excited sample), an assumption that we will make for our
theoretical analysis.

In systems with a conserved charge, a time dependence
of the disorder almost invariably increases the time-averaged
conductance associated to the charge. Indeed, since the con-
ductance is an exponentially small quantity, its time average
is likely to be dominated by rare temporal fluctuations during
which the conductance increases exponentially, even if only
for an exponentially small fraction of the total time. It is often
the first exponential that dominates, as we will show with an
explicit calculation in this paper. Likewise, the life time of
excitations localized in the bulk of a sample is likely to be
limited by such rare fluctuations, rather than by the decay in
the presence of a typical disorder configuration.

This then raises an interesting question: Anderson’s crite-
rion for the breakdown of localization requires that the decay
rate to infinity turns from being exponentially suppressed in
the system size to becoming finite. Since it turns out that
in the presence of fluctuations these decay rates depend on
whether one takes their annealed, i.e., time-averaged value,
or their quenched value in a static, typical configuration one
might surmise that the delocalization transition of the quan-
tum system actually depends on whether or not the disorder is
fluctuating (which strictly speaking assumes a bath, as we will
discuss in more detail below). From this it is then a natural
next step to ask what would happen if fluctuating effective
disorder arose not from an external source, but were gener-
ated internally, by the dynamics of the system itself (which
is consistent only within a many-body-delocalized phase). If
the delocalization transition indeed hinged on the presence or
absence of fluctuations, the instability would actually depend
on whether one approaches the transition from the delocal-
ized or the localized side. This would then suggest a region
of bistability where either phase would be self-consistent—a
scenario that would be in stark contrast with the currently
favored scenario that the many-body delocalization transition
occurs at a unique, well-defined critical point [19–21].

The question about the effect of fluctuations is particularly
relevant in systems where interactions have the predominant
role of tuning the effective disorder. This differs from their
role in the canonical models of weakly interacting disordered
quantum particles that were studied in the wake of MBL [2,3].
In those cases the prime role of interactions is to tune the num-
ber of scattering channels that allow for long-range transport.
Here instead we are interested in systems of particles or spins,
where the interaction terms act mostly “classically”, in the
sense that they commute with each other and with the disor-
dered potential part of the Hamiltonian; a simple example are
density-density interactions of strongly localized electrons or
Ising interactions of spins in random longitudinal fields. In
such models, transport is mainly due to kinetic hopping or
spin-flip terms, which compete with the interaction-induced

potential landscape. The interaction terms thus strongly affect
the effective local energy spectrum that excitations encounter
as they propagate. Note that the net effect of interactions in
this framework is not obvious from the outset: On the one
hand, thermal fluctuations of the degrees of freedom with
which an excitation interacts (other spins or electrons) may
generate effective local fields that are more resonant with the
considered excitation, enhancing small denominators and thus
favoring delocalization. In certain cases, on the other hand,
the interactions may even enhance the localization tendency
with increasing temperature, because thermal configurational
disorder translates into an increased width of the disorder
distribution [22–25]. “Classical” interactions (i.e., interactions
diagonal in the natural, localized basis), may also play a
significant role for the usual channel of many-body delocal-
ization, in particular if they are longer ranged. In that case
a flipping degree of freedom can bring two different degrees
of freedom into resonance with each other and thereby kick
off a side avalanche of decay. This phenomenon of spectral
diffusion [26,27] tends to decrease the stability of the MBL
phase. Here, we restrict ourselves to short ranged models
where such side-avalanches can be neglected.

The localization properties of one of the simplest real-
izations of a system of predominantly classically interacting
degrees of freedom was studied in Ref. [28] and analyzed on
a Bethe lattice for simplicity, as a proxy for finite-dimensional
lattices with a site connectivity larger than 2. Despite the fact
that the distribution of effective local fields (sampled over all
sites) remained temperature-independent in that model, the
results of Ref. [28] suggested that the presence of thermal
fluctuations shifted the localization phase boundary towards
stronger disorder. As we mentioned above, if true, such an
effect would entail the possibility of an intermediate range of
disorder strength where two physically different phases would
be self-consistent and locally stable: (i) a nonfluctuating, more
strongly localized nonthermal phase with frozen effective po-
tentials and (ii) an ergodic delocalized phase with thermally
fluctuating effective potentials.

Here we revisit this intriguing scenario. Our analysis
shows, however, that such a bistability of localized and de-
localized phases is impossible: While temporal fluctuations
of local potentials definitely affect the spatial structure of lo-
calized excitations and their effective localization length, the
localization phase boundaries (or the associated crossovers)
will be shown to be independent of whether or not thermal
fluctuations are included in the analysis. This is so despite
the fact that analytically continuing the annealed (“fluctu-
ating”) conductance from the strong-disorder regime would
actually predict delocalization at stronger disorder than in
a disorder-quenched system. However, we will show that a
phase transition inside the insulating regime (from a deep,
“nonresonating insulator” to an “intermittent metal”) invali-
dates the analytical continuation and thus the prediction of
a shifted delocalization transition. Nonresonating insulator
and intermittent metal exhibit qualitatively different average
conductances, with a potentially observable transition be-
tween them [29]. In the intermittent metal the conductance
is dominated by rare thermal fluctuations that induce metallic
behavior, while the sample still looks well insulating at typical
instants.
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We will find that in dimensions d > 1 thermal fluctuations
induce a further transition within the intermittent metallic
phase. That second transition is a quantum analogon of the
freezing-unfreezing transition occurring in certain models of
glasses [30,31]. While in static (or relatively weakly fluctuat-
ing) disorder the conductance is dominated by the propagation
along one (or very few) rather well-defined paths through the
sample, this changes in the vicinity of delocalization, where
the dominant path starts to fluctuate with the thermal fluctua-
tions of the effective local disorder. This is closely related to
the well-known “chaos” phenomenon in glassy systems where
the ground-state configuration often changes in a chaotic man-
ner as the disorder potential is modified [32–34].

We reach these results as follows. In Sec. II we introduce
our model and recall how to compute approximately the decay
rate of local excitations. In Sec. III we discuss how to account
for the thermal fluctuations induced by a weak coupling of
the system to a bath. We discuss the limits of validity of our
approach and comment on the implications of our results for
the localization-delocalization transition, if the fluctuations
are interpreted as being generated internally by the system
in a delocalized phase. The simpler one-dimensional case in
which one single decay path is accessible to the system is
analyzed in Sec. IV, to illustrate how the transition between
the nonresonating insulator and the intermittent metal occurs.
These results are generalized to many decay paths in Sec. V,
where we will find the path-unfreezing transition. In Sec. VI
and VII we discuss the physical interpretation of our results.
The conclusions are given in Sec. VIII.

II. MODEL AND LOCATOR APPROXIMATION

As motivated above we consider models where the interac-
tions predominantly shape the effective energy landscape. We
focus on spin systems on a lattice, with Hamiltonian of the
generic form

H = Hcl
({

σ z
i

})−
∑
〈i, j〉

J⊥(σ+
i σ−

j + σ−
i σ+

j ), (1)

where Hcl is a function of the classical Ising spin variables
σ z

j only, and thus only contains mutually commuting terms.
Quantum fluctuations and dynamics arise through the spin-flip
term with amplitude J⊥. The notation 〈i, j〉 indicates that the
sites i, j are nearest-neighbors in the lattice.

The effective local field seen by spin i is

heff
i = −∂Hcl

∂σ z
i

, (2)

which for pairwise Ising interactions takes the form

heff
i = εi +

∑
j∈∂i

Ji jσ
z
j ≡ heff

i (εi, �σ∂i ), (3)

where �σ∂i denotes the configurations σ z
j of the spins in the

neighborhood ∂i of σ z
i , see Fig. 1. We assume the random

fields εi to be independent on every site, with an identical
distribution f (ε) with width W . Models of the form (1) arise
rather ubiquitously in the theory of disordered quantum mag-
nets [27,35], quantum Coulomb glasses [36–39], disordered
supersolids [40–42], cold atomic systems [43], or disordered
superconductors [44,45].

FIG. 1. Schematic representation of the set-ups discussed in this
paper. The top figure shows sites s belonging to a path of length R,
each site being connected to other N “environmental” spins (here
N = 2) belonging to the neighborhood ∂s. The bottom figure shows
in red one out of exponentially many paths of length R on a tree
with branching number k = 2. Each site s of the tree is connected to
N � 1 environmental spins in ∂s.

The nearly classical variables σ z
i have a dynamics induced

by the transverse term. The local fields heff
i evolve with time

due to the fluctuations of the neighboring spins, which we
suppose to be induced by a very weak coupling to a bath, e.g.,
of phonons. If the neighboring spins fluctuate thermally, the
probability to see a field hi at a given site i is given by

P(hi|�εi) =
∑

{σ z
j }| j∈∂i

∏
j∈∂i

e−βε jσ
z
j

2 cosh(βε j )
δ

(
hi − εi −

∑
j∈∂i

Ji jσ
z
j

)
.

(4)
The on-site distribution depends on the random fields at the
site i and at the neighboring sites j ∈ ∂i, which we collectively
denote by �εi. The distribution of local fields sampled aver all
sites reads

P(h) = 1

N

N∑
i=1

δ
(
h − heff

i

) = 1

N

N∑
i=1

δ

(
h − εi −

∑
j∈∂i

Ji jσ
z
j

)
,

(5)
where the {σ z

j } realize a typical classical configuration sam-
pled from the Gibbs ensemble at temperature T ≡ β−1. This
distribution in general depends on the temperature. However,
here we restrict ourselves to temperatures T � ∑

j J2
i j/W , in

such a way that we can neglect the polarizing influence of spin
i on its neighbors. We also assume statistical time-reversal
symmetry, implying that the distribution of local fields f (ε) is
even. In this case the probability of finding neighboring spins
up or down, averaged over all those spins, is always

p(σ z ) =
∫

dε
e−βεσ z

2 cosh(βε)
f (ε) = 1

2
(6)

094205-3



VALENTINA ROS AND MARKUS MÜLLER PHYSICAL REVIEW B 104, 094205 (2021)

independent of the temperature. It follows that the distribution
of local fields P(h) in Eq. (5) is T independent as well. While
it would not be difficult to take correlation effects at lower
temperatures into account, our simplification eliminates a po-
tential temperature dependence of the decay rates that arises
trivially from a T dependence of the local field distribution. It
thereby allows us to focus on the effect of thermal fluctuations
only. A case where correlation effects are strong and P(h)
does depend significantly on temperature at low T is instead
analyzed in Ref. [46].

Notice that the above definition of the distribution P(h)
makes sense even without a thermal average and even if
the system were completely frozen, realizing a single clas-
sical configuration sampled from the Gibbs distribution, but
without invoking a dynamic averaging. This is because the
average over the entire sample ensures that all possible local
configurations are sampled and represented in the sum (5).
This makes a thermal average superfluous, since P(h) is self-
averaging.

A. Locator approximation for the decay rate

To characterize localization for the model (1), we consider
the decay rate of a local (spin-flip) excitation created at a site 0
in the bulk of the lattice. In a localized system, the decay rate
vanishes in the thermodynamic limit, even if one couples the
system to a bath at the boundary. In the tree approximation
in which loops are neglected, approximate expressions for
the decay rate � (via the boundary) can be derived, based
on the linearization [45,47–51] of recursion equations for the
imaginary parts of Green’s functions. For Hamiltonians such
as in Eq. (1), in appropriate units they take the form

�R[�ε, �σ∂ ; ω] =
∑

P:0→BR

∏
s∈P

J2
⊥[

ω − heff
s (εs, �σ∂s)

]2 , (7)

where the sum is over the exponentially many lattice paths P
that connect the bulk site 0 to the boundary BR, assumed to
be at lattice distance R from site 0. By ∂ = ∪∂s we denote the
collection of all spins that are neighbors of sites s on any such
path P. Different paths in the sum contribute with amplitudes
that are a product of locators, one for each site. The denom-
inators essentially correspond to the mismatch between the
energy of the propagating excitation ω and the effective field
at the site. This expression is obtained within the so-called
forward scattering approximation, that corresponds to taking
the leading order in the quantum fluctuations J⊥. In particular,
within this approximation, self-energy corrections to the de-
nominators are neglected [47,50,52]. If the lattice is locally
tree-like, the spins �σ∂i with which the excitation interacts
are different from site to site, and therefore the locators at
different sites are statistically independent. We also resort to
this approximation when having in mind more general lattices,
which are at best locally tree-like [53].

The excitation is considered to be localized whenever the
typical value of �R decays exponentially in R with a positive
spatial decay constant γ > 0, 〈ln �R〉 = −Rγ + o(R) (see the
next section for a precise definition of the average). The van-
ishing of this constant γ = 0 can thus be taken as signature
for the onset of a delocalized phase.

III. FLUCTUATION-ENHANCED DECAY RATE

The amplitude of each path in the sum (7) is affected
by the interactions with the neighboring spins, as it depends
explicitly on the variables �σ∂ . We refer to these variables as
the “neighboring” or “environmental” spins in the following.
It is natural to expect that different values of the decay rate
are obtained depending on whether these variables are treated
as frozen in a typical configuration at inverse temperature β,
or as liquid dynamic variables that are allowed to fluctuate
at each site and assume different configurations according to
their thermal probabilities [54]. In the latter case, one can
have rare fluctuations in the environmental spins that give rise
to local fields that are more frequently close to ω than in a
typical thermal configuration. In an optimized fluctuation of
environmental spins, the abundance of small energy denomi-
nators is higher, which opens a more efficient decay channel
for the excitation than a typical configuration [28]. Since
the probability for a small deviation of denominators from
a typical thermal distribution only decreases with the square
of the deviation, while its effect on the decay rate is linear,
we generally expect that fluctuations enhance the decay. In
other words, the annealed decay rate is expected to be strictly
bigger than its quenched counterpart, except possibly at the
localization transition. This will be confirmed by our explicit
calculations below.

A. Delocalizing effects of coupling to a weak bath

The above calculation of decay rates makes perfect sense in
a system where the neighboring spins are nondynamic, which
is the case if the only terms in the Hamiltonian were Ising
couplings, that preserve the z component of the neighbors. At
strong enough disorder this constitutes a particular realization
of a closed, many-body localized system. Now, we however
want to extend the consideration of decay, or the conductance
across a finite sample, to the case where the neighboring spins
are weakly coupled to a bath, e.g., of phonons, which allow
for a slow flip rate of the neighbors, such that over sufficiently
long times all possible neighbor configurations are sampled
with their thermal weight. This amounts to a slow stochastic
time evolution of the local fields seen on the paths of the
lattice.

From previous investigations of time-evolving potentials,
see e.g., Refs. [15,16], it is clear that over time resonances will
be created at finite distances, during which excitations will be
displaced to new sites, from where later occurring resonances
may carry them further in a random fashion. Such processes
result in a slow diffusion. The weak coupling to a bath can also
allow for inelastic transitions where some energy is exchanged
with the bath. So both types of processes invariably induce a
small, yet finite diffusivity in the system that strictly speaking
destroys localization. However, in the limit where the bath
coupling is weak and the thermal fluctuations are very slow,
and provided that we consider finite spatial distances, the
induced diffusive processes become subdominant compared
with direct decay. The latter does not involve the bath coupling
and its average rate is independent of the frequency of thermal
fluctuations. Here we focus on this regime of decay over finite
spatial distances, that are such that transport via multistep
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resonant processes or inelastic processes involving energy
exchange with the bath are negligible. That is, we assume
very slow fluctuation rates and an associated time scale τ f

that exceeds typical times for excitations to tunnel coherently
across the finite distance we are considering. We then ask
about two limiting regimes of transport: We consider a regime,
where we average the conductance or decay rates over times
�τ f , which we refer to as the liquid, since fluctuations of
the effective disorder potential are sampled over that time.
We distinguish it from the frozen conductance or decay rates,
which are relevant if we average only over time windows
shorter than τ f .

B. Annealed (liquid) and quenched (frozen) decay

To investigate the effect of thermal fluctuations, we de-
scribe the liquid environment by computing the annealed
average (which is essentially equivalent to the time-average)
of the decay rates associated to each path in (7), obtaining

�R[�ε; ω]=
∑

P:0→BR

∫ ∏
s∈P

dhsP(hs|�εs) min

{
1,
∏
s∈P

J2
⊥

[ω − hs]2

}
,

(8)
where the field distribution P(hs|�εs) is averaged over the ther-
mal distribution of configurations of neighboring spins. Note
that we have to be cautious when averaging the decay rate:
While within the insulating phase it typically decreases expo-
nentially with the path length, it might happen that on paths
with rare configurations, where small denominators are more
frequent, the product of locators becomes exponentially large.
This is obviously an unphysical artifact, which arises from our
forward approximation and its neglect of self-energy correc-
tions. Those would introduce correlations between the local
fields and in particular suppress the effect of small denomi-
nators, ensuring that the decay rate never grows exponentially
with distance. Indeed, from physical considerations, the decay
rate can at best become of order O(1). In Eq. (8) we have
remedied this artifact of our approximation by introducing an
upper cutoff of 1 on the locator product. Note that the results
and conclusions derived below do not depend on the specific
constant c = 1 chosen for the cutoff. Indeed, only the leading
exponential behavior in R of the locator product of Eq. (8),
and thus of the decay rate, matters. A different cutoff value
would only affect subleading finite size contributions to the
decay rate [55].

To obtain a meaningful decay rate, we still need to specify
how to average over the random fields εi that enter the above
calculation. In the case of a liquid environment, the decay
rate should first be averaged over the annealed environmental
spin variables, as described above; to obtain the typical decay
rate, the resulting � should then be logarithmically averaged
over the local fields εi. Notice that in this case the decay rate
depends on the local random fields εi via the energy denomi-
nators, as well as via the distribution P(hs|�εs) in (4), since the
Boltzmann weight of the neighboring spins σ z

j depends on the
local fields ε j . In contrast, when the environment is treated
as frozen (anticipating a fully localized phase) the average of
ln � should be taken over local fields and the configuration
of neighboring spins, since the latter are quenched during the
decay time. The resulting distribution is then simply given by

P(h) in (5). This leads us to define the following two spatial
decay constants γF,L that characterize the decay rates in frozen
and liquid environment:

γF = − min

(
lim

R→∞

∫ ∏
i

dhi P(hi )
ln �R

R
, 0

)
,

γL = − min

(
lim

R→∞

∫ ∏
i

dεi f (εi )
ln �R

R
, 0

)
, (9)

where i runs over all lattice sites, and the subscripts F and L
stand for ‘frozen” and “liquid”, respectively. The expression
for �R entering in the definition of γF is given by (7) with
the notation heff

s → hi, while �R in the definition of γL is
given in (8). As usual, the convexity of the logarithm implies
γL � γF . This is in line with the physical expectation that a
fluctuating environment of neighboring spins can increase the
abundance of small denominators.

C. Coexistence of frozen and liquid phases?

As discussed above, delocalization happens when γ = 0.
From the fact that the annealed decay rate is always bigger
or equal to its frozen counterpart, one might expect that at a
given temperature and at fixed disorder strength W , the critical
value of the transverse field J (c)

⊥ at which γ = 0 depends on
whether the environment fluctuates or not, and that it might
be smaller for a fluctuating environment than for a frozen
environment, J (c)

⊥,L < J (c)
⊥,F . If that were indeed so, it would

suggest a regime of coexistence, or bistability, J (c)
⊥,L < J⊥ <

J (c)
⊥,F , in which both assumptions, a frozen, localized phase

or a liquid, delocalized phase are self-consistent (whereby in
this Gedanken experiment we assume that thermal fluctua-
tions are permitted not through an external phonon bath, but
rather through the system constituting its own bath, being in
a many-body delocalized phase). However, such a scenario
will be ruled out below. Indeed we will show that in fact
J (c)
⊥,L = J (c)

⊥,F , since the annealed and frozen averages become
equal at criticality.

IV. ONE DIMENSION—A SINGLE DECAY PATH

To illustrate the phenomenology of annealed and frozen
decay rates in the simplest possible framework we consider
first the case in which only one decay channel is accessible to
the excitation, meaning that the sums in (7) and (8) reduce to
a single path, see Fig. 1 (top). We caution that in this simple
1d case the localization-delocalization transition predicted by
γ = 0 should be taken with a grain of salt, since it is well
known that for single particle Anderson localization in 1d,
there is never a genuine delocalization. In that case γ = 0
only marks the crossover to the weak-localization regime,
where the localization length becomes large, even though it
does not diverge due to the relevance of backscattering at
long distances and times. For many-body problems however,
the latter are usually too weak to enforce localization [56,57]
and γ = 0 can still be taken as a reasonable estimate for the
transition. Despite its simplicity this example already exhibits
the transition (within the insulating phase of a system in a
fluctuating environment) between the nonresonating insulator
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and the intermittent metal. The latter fluctuates into becoming
metallic for a small fraction of the time. Technically, it is
characterized by dominant environmental configurations that
saturate the bound in Eq. (8), while in the nonresonating insu-
lator the dominant fluctuations still have exponentially small
decay rates, so that the bound in Eq. (8) remains irrelevant.

The possibility and relevance of resonant transmissions in
disordered conduction problems has long been recognized
in static transmission problems, starting with the work by
Lifshitz and Kirpichenkov [11]. It shows up in the tunneling
through insulating junctions as resonant transmission peaks
as a function of energy [58–60], as well as in the Joseph-
son coupling through disordered insulators [61,62]. Resonant
transmission can also occur in classical wave propagation
in inhomogeneous media [63]. However, to the best of our
knowledge previous works on static problems have not stud-
ied whether resonant transmission occurs essentially at all
energies in a given interval of interest, or whether it remains
confined to narrow resonance windows. From our calculation
below we will see that rare fluctuations will generically drive
the system metallic (independent of the precise excitation
energy), and we identify the conditions when such fluctuations
provide the dominating channel of decay or transmission.

The analysis of static disorder was extended to include
the possibility of inelastic processes where resonant trans-
mission occurs together with a finite energy exchange with
phonon degrees of freedom that render the disorder potential
dynamic [64,65]. The essential result of these studies was
that resonant transmission is still possible, albeit with the
resonant transmission being smeared out over a somewhat
larger energy window, but with comparable integrated trans-
mission. These results suggest that the total transmission or
decay rate is still well estimated by neglecting such inelastic
processes. In our model they would correspond to processes
where neighboring spins flip and absorb part of the energy of
the excitation. We neglect such processes also for the reason
that they come with small matrix elements, as the coupling to
individual neighbors is weak.

A. Frozen vs annealed decay rate

We start by deriving explicit expressions for the spatial
decay constants γF,L. We focus on frequencies in the middle of
the range of local excitations, choosing ω = 0 for simplicity
and dropping the dependence on ω from now on. The frozen
constant γF , when positive, is readily computed as

γF = −
∫

dh P(h) ln
∣∣∣J⊥

h

∣∣∣2. (10)

Recall that the distribution of local fields P(h) does not depend
on temperature, and therefore γF does neither. In contrast, the
liquid decay rate does depend on temperature. To compute it,
we rewrite

�R[�ε] =
∫ ∞

−∞
dx min{e−Rx, 1}PR(x|�ε), (11)

where PR(x|�ε) is the probability (over the thermal configura-
tions of neighboring spins) of finding a path amplitude that

decays with spatial decay constant x. Formally it equals to

PR(x|�ε) =
∫ R∏

s=1

dhs P(hs|�εs)δ

(
2

R

R∑
s=1

ln
∣∣∣J⊥

hs

∣∣∣+ x

)
. (12)

We show in (18) below that when evaluated for a typical
realization �εtyp of the quenched random fields on path sites
and on their neighbors, this probability can be rewritten as

PR(x|�εtyp) = e−R�(x)+o(R). (13)

With this one readily obtains the large R limit of �,

�R[�εtyp] =
∫ ∞

−∞
dx min{e−Rx, 1}e−R�(x)+o(R), (14)

via a saddle point calculation.
To obtain the probability of the spatial decay rate we rep-

resent the constraint in (12) by an integral over an auxiliary
variable ξ , which leads to

PR(x|�ε) = R

2π

∫ ∞

−∞
dξ eR[iξx+�̃R (iξ,�ε)] (15)

with

�̃R(z, �ε) = 1

R

R∑
s=1

ln

(∫
dhs P(hs|�εs)e2z ln | J⊥

hs
|
)

. (16)

The probability (15) depends on the field realization �ε and
is in general not self-averaging, being exponentially small in
R; however, the quantity (16) is intensive. Its typical value
equals [66]

�(z) =
∫ ∏

i

[dεi f (εi )]�̃R(z, �ε)

=
∫

d�εs p(�εs) ln

[∫
dhs P(hs|�εs)e2z ln | J⊥

hs |
]
, (17)

where p(�εs) = f (εs)
∏

u∈∂s f (εu). Therefore the probabil-
ity (15) evaluated on typical realizations �εtyp, after a rotation
in the complex plane, can be written as

PR(x|�εtyp) = cR

∫ i∞

−i∞
dξ eR[ξx+�(ξ )] ≡ e−R�(x)+o(R) (18)

where cR is a constant that is subexponential in R. For large
R, the leading order term �(x) can be obtained from a saddle
point calculation as

�(x) = −[ξ ∗(x)x + �(ξ ∗(x))], (19)

where ξ ∗(x) is defined as the inverse function of

x(ξ ) = −�
′
(ξ ) = −

∫
d�εs p(�εs)

〈
ln
∣∣ J⊥

h

∣∣2∣∣ J⊥
h

∣∣2ξ 〉
〈∣∣ J⊥

h

∣∣2ξ 〉 , (20)

with the notation 〈. . . 〉 = ∫
dhP(h|�εs)(. . . ). Within this

framework the typical decay constant (as in a frozen thermal
configuration of the environment) is recovered setting ξ ∗ = 0,
with which one indeed finds

xtyp = x(ξ ∗ = 0) = γF (21)

upon comparing (20) and (10). Further, from (19) and us-
ing the identity �(0) = 0 [cf. Eq. (17)] one confirms that
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�(xtyp) = 0 for this decay rate, as it must be for the logarithm
of the probability of typical configurations.

After this digression, let us now return to evaluating the an-
nealed spatial decay rate in a fluctuating environment, which
we expect to be smaller than the one corresponding to typical
configurations of the environment. The configurations of �σ∂i

that dominate the annealed average are usually exponentially
rare (� > 0). As a matter of fact, implementing the constraint
in (8) we find

�
′
R[�εtyp] =

∫ 0

−∞
dxe−R�(x)+o(R) +

∫ ∞

0
dxe−R[x+�(x)]+o(R).

(22)

Given that we restrict to the regime in which xtyp > 0, the first
integrand in (22) assumes its maximum at a value of x outside
the integration domain, and thus the integral is dominated by
the contribution from the boundary x = 0. The second term
is dominated by the point xSP that solves the saddle-point
equation �′ = −1 or

ξ ∗(xSP) = 1, (23)

as follows from (19) and (20). The solution reads

xSP = −
∫

d�εs p(�εs)

〈
ln
∣∣ J⊥

h

∣∣2∣∣ J⊥
h

∣∣2〉〈∣∣ J⊥
h

∣∣2〉 . (24)

This value belongs to the integration domain as long as xSP >

0. In this case one finds �R = exp(−γ naive
L R + o(R)) with

γ naive
L = −�(1) = −

∫
d�εs p(�εs) ln

〈∣∣∣J⊥
h

∣∣∣2〉. (25)

However, once xSP saturates to zero, the boundary value
x = 0 dominates the second integral, implying �R =
exp(−γ int.met

L R + o(R)) with

γ int.met
L = �(x = 0). (26)

Therefore, if positive, the liquid decay constant reads

γL = �(xSP)γ naive
L + �(−xSP)γ int.met

L . (27)

B. The fluctuations-induced transition in the insulator

The behavior of the spatial decay constants γF in (10) and
γL in (27) is shown in Fig. 2 for a system with Hamiltonian (1)
defined on a path with N = 2 environmental spins attached
to each site as in Fig. 1 (top). The fields εi are taken to be
uniformly distributed in the interval [−W/2,W/2], and the
interactions Ji j ≡ Jz are constant. The analysis of this case of
a single-decay channel leads to the following conclusions:

(i) Thermal fluctuations do affect spatial localization. The
liquid-decay rate is always smaller than the frozen one. Indeed,
for generic values of the parameters it holds that

xSP + �(xSP) � xtyp, (28)

where xtyp is defined by �(xtyp) = 0. Thus, γL � γF , consis-
tent with the expectation that an annealed average over the
environmental spins is in general dominated by configurations
that are more resonant with the decaying excitation, but are
too rare to contribute to the typical spatial rate γF (as they have
exponentially small probability, �(xSP) > 0). Fluctuations of

FIG. 2. Comparison between the decay constants γF (purple) and
γL (green) in frozen and liquid environments, respectively, for a chain
(or a single path) each spin of which is coupled to N = 2 environ-
mental spins. Parameters are W = 1, β = 0, and Jz = .26. The blue
star marks the transition between the nonresonating insulator and the
intermittent metal of a system with a liquid environment. It occurs
when the dominating fluctuations give rise to spatial decay constants
xSP = 0. In the nonresonating insulator the total liquid decay constant
is larger than xSP = 0 by an amount �(xSP ), because the dominant
fluctuations are exponentially rare temporal fluctuations. The blue
dot marks the “delocalization” crossover J (c)

⊥ at which both decay
constants become zero. At this point the system turns metallic, ir-
respective of the nature of the environment. The dashed green line
shows the analytic continuation of the curve xSP + �(xSP ) into the
region where the decay rate of rare thermal fluctuations, naively
evaluated, would take unphysical negative values xSP < 0.

the environmental spins thus lead to a larger effective local-
ization length of local excitations.

(ii) Within the insulator, a transition occurs in the an-
nealed conductance. The spatial decay constant γL exhibits
a nonanalyticity when xSP reaches zero. For weak hopping
terms (or quantum fluctuations), xSP > 0. This means that
the thermal configurations that contribute dominantly to the
decay rate give rise to a path weight exp(−xSPR) that is itself
exponentially small in R, and resonances are strongly sup-
pressed. As the quantum fluctuations increase, the dominating
spin configurations along a path become such that the far
distance tunneling amplitude reaches values O(1), which does
not decay exponentially with R. This is the intermittent metal
regime. However, the system still remains an insulator since
the rate � is now proportional to the probability of occurrence
of such configurations through fluctuations, which is expo-
nentially small in the path length and given by ∼e−R�(0) with
�(0) = �(ξ ∗(xSP = 0)).

(iii) Thermal fluctuations do not affect the transition point
out of the insulator. The vanishing of the decay constant, γ =
0, occurs at exactly the same value of the parameters in both
the frozen and the liquid case: for γL = minx�0{x + �(x)} to
be zero, one indeed needs that both x = 0 and �(x = 0) = 0,
cf. Eq. (26). Since �(x) vanishes for x = xtyp (by definition),
this implies together with Eq. (21) that at these parameters
γF = xtyp = 0 as well. Exactly at the transition, the configu-
rations of the environmental spins that dominate the average
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conductance and lead to path weight of amplitude ∼1 become
typical. Therefore they contribute to the quenched conduc-
tance and the two conductances become equal.

In conclusion, even though the fluctuations of neighboring
spins can indeed open more favorable decay channels for the
decaying excitations, they do not shift the boundary of the
localized phase. We note that in order to reach this last con-
clusion it was crucial to impose the physical bound prohibiting
exponentially large, unphysical path amplitudes: Failing to do
so, one would miss the transition in (ii) and would erroneously
conclude that the two spatial decay constants γL and γF vanish
at different points in parameter space (see the dashed green
line in Fig. 2).

V. OPTIMIZING OVER MANY PATHS

We now extend these results to the case of an exponentially
large number of paths as it is relevant for higher dimensions
d > 1. In particular, we will confirm the persistence of the
transition between a nonresonating insulator and an intermit-
tent metal in the presence of a liquid environment. However, in
addition, we identify another transition within the intermittent
metallic phase, which is the analog of the glass transition
in the related classical problem of a directed polymer in a
random medium: On the more insulating side of the inter-
mittent metal, the dominant path that occasionally becomes
metallic is fixed. However, upon approaching the metallic
phase, there are exponentially many paths that occasionally
become metallic through thermal fluctuations. In other words,
the optimal paths itself starts to fluctuate in space.

In order to simplify the analytical treatment, we consider a
Bethe lattice of branching number k, where additionally each
site s has its own N environment spins σ z

j with j ∈ ∂s, see
Fig. 1 (bottom). Each of these spins interacts with σ z

s through
a coupling Js j ≡ Jz/

√
N , and sits in a field ε j drawn indepen-

dently for every site from the distribution f (ε). The quenched
fields εs along the path are also random and independent, with
identical distribution f (ε). We assume N to be very large, so
that the field transmitted to a site s by the environmental spins

henv
s = Jz√

N

∑
j∈∂s

σ z
j (29)

is a fluctuating Gaussian variable. The σ z
j are thermally fluc-

tuating and have the probability distribution p(σ z
j ) = (1 +

mjσ
z
j )/2 where mj = tanh(βε j ). Thus the henv

s have means Ms

and variances Vs (with respect to the thermal fluctuations) that
depend explicitly on the random fields �ε∂s, and read

Ms ≡ M(�ε∂s) = henv
s = Jz√

N

N∑
j=1

mj,

Vs ≡ V (�ε∂s) = (
henv

s

)2 − henv
s

2 = J2
z

N

N∑
j=1

(
1 − m2

j

)
, (30)

where the line denotes the average over thermal fluctuations of
the σ z

j in their fixed random fields. Both Ms and Vs are random
variables; however, Vs has negligible fluctuations and tends to

the fixed value

Vs → Vβ ≡ J2
z

∫
dε f (ε)[1 − tanh2(βε)]. (31)

In contrast, the mean Ms fluctuates from site to site according
to a Gaussian distribution with zero mean and variance:

vM = J2
z

∫
dε f (ε) tanh2(βε) = J2

z − Vβ. (32)

Given a fixed configuration �εs = (εs, �ε∂s) of the quenched
local fields on the given sites s and of the N neighboring ones
j ∈ ∂s, the probability (over the thermal fluctuations) to find
an effective local field hs at the site s is therefore a Gaussian
that depends on εs and �ε∂s only through the combination

Es(�εs) = εs + M(�ε∂s) (33)

reading

P(hs|Es) =
exp

(− [hs−Es]2

2Vβ

)
√

2πVβ

. (34)

This corresponds to (4) and where we replaced the local
variance with the averaged one. To further simplify the cal-
culations, we assume the distribution f (ε) to be Gaussian as
well, with standard deviation W ,

f (ε) = e− ε2

2W 2

√
2πW 2

. (35)

Then the distribution of (33)

ρ(Es) =
∫

dεs f (εs)
e− (Es−εs )2

2vM√
2πvM

, (36)

is itself Gaussian, and

P(hs) =
∫

dEs ρ(Es) P(hs|Es) =
exp

(− h2
s

2(J2
z +W 2 )

)
√

2π
(
J2

z + W 2
) (37)

is independent of temperature as it has to be, see the discus-
sion around Eq. (5).

A. Biased distribution of quenched fields along the optimal path

Let us now discuss how to account for the presence of
multiple paths. The main difficulty in this case consists in
simultaneously taking into account the constraint on the liquid
decay constant being nonnegative, (8), and the statistics of the
quenched fields �ε. As an exponentially large number of decay
channels is available to the system, some of them have highly
atypical distributions of quenched fields �ε along the path and
its environmental sites. Those can lead to large deviations
of path amplitudes. If the fluctuations of the local fields are
sufficiently strong, these large deviations affect the statistical
behavior of sums of the form (7) and (8), in that they become
dominated by a single (or at best a few) optimal path.

Let us first discuss the noninteracting limit of the prob-
lem, where the environmental spins are absent. In this case
it is known that in the whole localized phase sums of the
form (7) are dominated by one single (or at best a few)
contribution(s) or “optimal path(s)” [1,47,67], associated to
a particularly large amplitude. In the noninteracting setting,
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on a Bethe lattice, this can be rationalized straightforwardly
via a mapping to a directed polymer, by identifying the sum
� with the partition function of the polymer anchored at the
origin of the lattice [30]. This mapping allows one to compute
the spatial decay constant γ as the free energy density of the
polymer. Under this mapping the domination of � by one (or
few) optimal path(s) is the equivalent of the frozen (or glassy)
phase of the polymer: The localized phase for a noninteracting
problem always maps to the glassy phase of the corresponding
polymer problem. Delocalization occurs when the amplitude
of the optimal path becomes of order O(1), which means
that exactly at the transition, among the exponentially many
paths one typically finds just one (or very few) that allow a
decay to the boundary. [68] Thanks to this mapping, the frozen
path nature of the localized phase is straightforward to see,
though one has to remember that the mapping relies on the
forward approximation [52]. However, the frozen path nature
remains robust when self-energy corrections are added, as fol-
lows from rigorous results [67,69]. In contrast, an interacting
system with a fluctuating environment does not necessarily
have to be in a frozen path phase, as we will see below.

As we recall in Appendix A, the expression for the non-
interacting decay constant γ on a Bethe lattice, as derived
in [30], can be found from a convenient variational formula-
tion [51]: The amplitude of the dominating path is distributed
like the maximum among kR path amplitudes with negligible
mutual correlations, which reflects that the correlations among
different paths on a Bethe lattice do not matter for the prob-
lem at hand. The dominating path will host a rather biased
distribution of local fields, ρ

opt
k (ε). The optimal distribution

ρ
opt
k (ε) along the optimal path can be determined by maxi-

mizing the expression of the decay constant, while making
sure that the probability of observing such a distribution on a
randomly picked path is at least O(k−R), which ensures that
such a path indeed typically occurs on a Cayley tree of depth
R. The logarithm of the probability Pρ of finding a path of
length R with such a biased distribution is measured by the
relative decrease in entropy, or Kullback-Leibler divergence,
of ρ

opt
k (ε) as compared to the typical, unbiased distribution

ρ(ε) of local quenched fields:

lnPρ = −R
∫

ρ
opt
k (ε) ln

(
ρ

opt
k (ε)

ρ(ε)

)
dε. (38)

Therefore

γ = min
ρ

opt
k :

lnPρ

R =− ln(k)

{∫
ln
∣∣∣J
ε

∣∣∣2ρopt
k (ε)dε

}
, (39)

see Eqs. (A8) and (A13) in Appendix A.
This reasoning can straightforwardly be extended to the

computation of the frozen decay constant γF in the presence of
environmental spins. Moreover, it will also allow us to derive
compact expressions for the liquid decay constant γL, and to
account for the bound on the path amplitude as we did in the
case of a single path.

B. Directed polymers in frozen vs liquid environments

Frozen environment. The decay rate in a frozen envi-
ronment can be obtained following the recipe given in the

previous section, which gives the correct result in a frozen
phase with essentially one optimal path. More generally it can
be obtained by exploiting the directed polymer analogy, which
we recall in Appendix A. The decay rate is obtained from the
analog of the “replicated free energy”,

ψF (η) = −1

η
ln

[
k
∫

dh P(h)
∣∣∣J⊥

h

∣∣∣2η
]
, (40)

with the distribution of fields P(h) as defined in (37). The
replicated free energy ψF (η) should be maximized over 0 �
η � 1. More precisely, denoting η∗ the argument, which max-
imizes ψF (40), one obtains for the decay constant

γF =
{
ψF (η∗) if η∗ � 1
ψF (1) if η∗ > 1.

(41)

The first case applies in the frozen phase where the sum over
paths is dominated by few contributions (subexponentially
many in number). We discuss the detailed calculation of this
function in Appendix B. Here, we simply remark that in order
for (40) to be defined for η � 1/2, one needs to regularize
the divergence arising due to small field denominators. Phys-
ically this is necessary since small denominators need to be
resummed, which effectively cuts off the effect of too small
denominators. In practice it suffices to impose a cutoff to the
integration, which regularizes the singularity from small de-
nominators h ≈ 0 [1], see Appendix B for details. For a frozen
environment we find that η∗ < 1 in the whole localized phase,
exactly as in a noninteracting problem. This is expected, since
the interactions enter the formalism only via the distribution
of the effective local fields.

We point out that it follows from the temperature inde-
pendence of P(h) [cf. Eq. (37)] that the decay constant γF

is independent of T . This implies that also the location where
it vanishes, i.e., the delocalization transition in a frozen envi-
ronment, is temperature independent. Since we will show later
on that the delocalization transition is independent of whether
or not fluctuations are included, we reach the nontrivial con-
clusion that the transition to the metallic regime is entirely
temperature independent in the model we consider here.

Liquid environment. Let us now turn to the more complex
calculation of the decay constant in a liquid, fluctuating en-
vironment. Let us first assume that the sum (7) is dominated
by an optimal path, with a configuration of fields �εs and thus
of effective on-site fields Es along the path. We call ρ

opt
k (Es)

the probability density describing the frequency with which
the effective field Es is encountered along that path, which of
course differs from the distribution across the whole system:

ρ
opt
k (Es) �= ρ(Es) = e

− E2
s

2(vM +W 2 )√
2π (vM + W 2)

. (42)

The optimal path amplitude depends not only on the local
fields εs at each site of the path, but via the fluctuating av-
erages Ms also on the fields on the neighboring sites ∂s. Let
us denote by �E the collection of effective fields Es along the
optimal path.

We proceed by determining the decay constant γL[ρopt
k ]

along this single optimal path as described in Sec. IV,
and subsequently determine the biased distribution (42)
by optimizing the resulting constant over ρ

opt
k under the
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constraint: ∫
dE ρ

opt
k (E ) ln

(
ρ

opt
k (E )

ρ(E )

)
= ln k. (43)

The analog of (12) describing the probability to encounter a
thermal fluctuation giving rise to the decay constant x along
this path now takes the form

PR(x| �E ) =
∫ ∏

s

dhs P(hs|Es)δ

(
2

R

R∑
s=1

ln
∣∣∣J⊥

hs

∣∣∣+ x

)
. (44)

Let us denote with �Eopt
typ a realization of fields along the path,

that is typical with respect to the unknown distribution (42).
We have

PR
(
x| �Eopt

typ

) = e−R�[x;ρopt
k ]+o(R), (45)

where �[x; ρopt
k ] is now a functional of the biased density ρ

opt
k ,

defined as

�
[
x; ρopt

k

] = −(ξ ∗x + �
[
ξ ∗; ρopt

k

])
. (46)

Here

�
[
ξ ; ρopt

k

] =
∫

dE ρ
opt
k (E ) ln

[∫
dh P(h|E )

∣∣∣J⊥
h

∣∣∣2ξ
]
, (47)

and ξ ∗ = ξ ∗[x; ρopt
k ] is obtained by inverting the saddle point

condition x = −d�[ξ ; ρopt
k ]/dξ , which reads explicitly

x = −
∫

dE ρ
opt
k (E )

ωξ (E )

(∫
dh P(h|E )

∣∣∣J⊥
h

∣∣∣2ξ

ln
∣∣∣J⊥

h

∣∣∣2), (48)

with

ωξ (E ) =
∫

dh P(h|E )
∣∣∣J⊥

h

∣∣∣2ξ

. (49)

In this notation, we leave the dependence on the couplings J⊥
and Vβ is implicit. Similarly as in the frozen case, we use a
cutoff around small fields to regularize the integral (49) for
ξ � 1/2, see Appendix (B) for details. Following the same
steps as in Sec. IV we obtain for the decay constant γL, defined
via the decay exp(−γLR) ∼ ∫

dx min{e−xR, 1}PR(x| �Eopt
typ ):

γL
[
ρ

opt
k

] = �(xSP)γ naive
L

[
ρ

opt
k

]+ �(−xSP)γ int.met
L

[
ρ

opt
k

]
,

(50)

where

xSP = −
∫

dE ρ
opt
k (E )

ω1(E )

(∫
dh P(h|E )

∣∣∣J⊥
h

∣∣∣2 ln
∣∣∣J⊥

h

∣∣∣2) (51)

and the two constants are given by

γ naive
L

[
ρ

opt
k

] = −�
[
1; ρopt

k

] = −
∫

dE ρ
opt
k (E ) ln[ω1(E )]

(52)
and

γ int.met
L

[
ρ

opt
k

] = �
[
x = 0; ρopt

k

] = −�
[
ξ ∗; ρopt

k

]
. (53)

It is straightforward to check [70] from these two expressions
that Eq. (50) can be compactly rewritten as

γL
[
ρ

opt
k

] = max0�ξ�1
{−�

[
ξ ; ρopt

k

]}
. (54)

These equations express the fact that the decay constant γL

corresponds to the naive annealed average γ naive
L , unless the

expression for the latter is dominated by unphysical, expo-
nentially growing contributions reflected by a negative growth
rate xSP < 0 at the saddle point. In that case the correct de-
cay constant is given by (53), which encodes the probability
to encounter a thermal fluctuation that produces a metallic
conduction along the path. The logarithm of this probability
is �[x = 0; ρopt

k ] = −�[ξ ∗; ρopt
k ], cf. (46), where ξ ∗ is the

solution of −d�/dξ = x = 0, or∫
dE ρ

opt
k (E )

ωξ∗ (E )

(∫
dh P(h|E )

∣∣∣J⊥
h

∣∣∣2ξ∗

ln
∣∣∣J⊥

h

∣∣∣2) = 0. (55)

It remains to find the optimal biased density ρ
opt
k . Our

analysis below closely parallels the calculation in Appendix A
for the noninteracting case. We optimize the decay rate subject
to the Kullback-Leibler constraint (43) and the normalization
constraint on ρ

opt
k . To do so we define the functional,

L
[
ρ

opt
k ; ξ, μ1, μ2

]
= −

∫
dE ρ

opt
k (E ) ln[ωξ (E )]

+μ1

[∫
dE ρ

opt
k (E ) ln

(
ρ

opt
k (E )

ρ(E )

)
− ln k

]

+μ2

[∫
dE ρ

opt
k (E ) − 1

]
. (56)

The first line is −�[ξ ; ρopt
k ] with ξ = ξ ∗ < 1 in the resonating

phase or ξ = 1 in the nonresonating phase, as can be seen
from Eqs. (47), (52), and (53). For any value of ξ , we find that
the normalized solution of

δL
[
ρ

opt
k ; ξ, μ1, μ2

]
δ ρ

opt
k

= 0 (57)

reads

ρ
opt
k (E ) = ρ(E ) [ωξ (E )]μ∫

dEρ(E ) [ωξ (E )]μ
, (58)

where we have substituted μ ≡ 1/μ1. Injecting this form into
the functional L we obtain the function

�L(μ, ξ ) = − 1

μ
ln

(
k
∫

dEρ(E ) [ωξ ]μ
)

, (59)

which still needs to be extremized with respect to μ, whereby
it turns out that the relevant extremum is always a maximum.
Notice that in this expression μ plays the same role as the
parameter η in the decay rate (40) in a frozen environment.
Let μ∗ the argument that maximizes �L, i.e., that solves

∂

∂μ
�L(μ, ξ ) = 0. (60)

Note that imposing the constraint (43) on the maximal
Kullback-Leibler divergence only makes sense if the decay
rate is maximized by a single path (or at most a subexpo-
nential number of paths). This is the case if and only if one
finds μ∗ < 1. Otherwise one should impose no constraint,
which is equivalent to setting μ = 1, in perfect analogy to
the noninteracting case. At the point where the solution of
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Eq. (60) reaches μ∗ = 1, the quenched average over the ran-
dom fields E becomes exactly equal to the annealed average,
as one can see by setting μ = 1 in (59). This corresponds
to a melting transition in the associated polymer problem.
While the Lagrange parameter μ controls the number of paths
that contribute, we recall that the remaining parameter ξ is
associated with constraining the sampling of thermal fluctu-
ations that lead to potentially negative decay constants. The
expression for �L still has to be maximized with respect to ξ

over the interval 0 < ξ � 1. We recall that a maximum with
ξ < 1 signals that the dominant thermal fluctuations turn the
system temporarily metallic on the given path, indicating a
rarely resonating insulator phase (intermittent metal).

The above formalism suggests the following algorithm to
calculate the decay constant γL:

(a) One first assumes ξ = 1 and determines μ∗ from

∂

∂μ
�L(μ, 1)|μ∗ = 0. (61)

The optimal distribution of E is then given by Eq. (58) with
μ = μ∗ and ξ = 1. Upon substituting this in Eq. (51), one
then checks whether the saddle point decay rate is positive,
xSP > 0, and thus physical. xSP > 0 implies ∂�L/∂ξ > 1,
which guarantees that �L(μ∗, 1) is indeed a maximum on
the domain 0 � μ, ξ � 1. When this holds true, it turns out
that the maximizing μ∗ always satisfies μ∗ < 1. This follows
from a simple convexity argument given in Appendix C. We
recall that μ∗ < 1 indicates that in this phase the decay rate
is dominated by a subexponential number of paths. Since
ξ = 1 we further know that each of those contributes with a
strictly exponentially decaying term (xSP > 0). This regime
thus corresponds to the deep, nonresonating insulator phase.
The total spatial decay constant is obtained substituting the
optimal distribution into (52) for the annealed thermal average
along the optimal path, which yields

γL = γ naive
L

[
ρ

opt
k (μ = μ∗)

] = �L(μ∗, 1). (62)

(b) If the assumption ξ = 1 and maximizing over μ leads
to the physically inconsistent xSP < 0 in (51), we know that
�L assumes its maximum for ξ < 1. Assuming ξ < 1 in turn
means that the dominant thermal fluctuations are constrained
in such a way that we make sure that the dominant path
amplitudes just reach 1 (or xSP = 0). In that case the physi-
cal bound on the path amplitude should be implemented by
solving simultaneously the two saddle point equations:

∂

∂μ
�L(μ, ξ )

∣∣∣
μ∗,ξ∗

= 0 = ∂

∂ξ
�L(μ, ξ )

∣∣∣
μ∗,ξ∗

, (63)

where the second equation ensures that x = 0, see (55). As
long as the solution to both equations yields μ∗ < 1, there is
a single optimal path, which does not change under thermal
fluctuations. Rare thermal fluctuations on this path turn it
metallic, which dominates the decay. This regime is path-
frozen.

Once the maximizing μ∗ approaches μ∗ = 1, the system
undergoes a transition to a nonfrozen phase in terms of the
dominating decay paths. In this path-unfrozen regime, one
has to set μ = 1, while ξ ∗ is determined as the solution of

∂
∂ξ

�L(1, ξ )|ξ∗ = 0. One then obtains

γL = γ int.met
L =

{
�L(μ∗, ξ ∗) if μ∗ � 1 path-frozen
�L(1, ξ ∗) if μ∗ > 1 unfrozen .

(64)
This yields the decay constant for the intermittent metal.

It is straightforward to deduce from the above that this
procedure is equivalent to the double maximization of �L over
a compact interval:

γL = max0�μ,ξ�1�L(μ, ξ ). (65)

Let us briefly discuss the resulting expressions for the spa-
tial decay constants. Comparing (59) with the expression (40)
for the frozen case, we see that �L(μ, ξ ) plays the role of
the replicated free energy of a directed polymer, but now for
a liquid environment. While in the frozen case the thermal
realization of the environmental spins �σ z

∂ and the random local
fields �ε are treated on the same footing, entering as quenched
disorder into the distribution P(h), in a liquid environment the
thermal fluctuations are fast and averaged over first. This leads
to the modified locator ωξ in (49), which takes the place of
the simpler locator (J⊥/h)2 of the frozen problem. The aver-
ages over the random local fields and over the configuration
of environmental spins, respectively, are associated with the
two distinct parameters, μ and ξ . The parameter μ controls
whether the number of paths that dominate the decay rate is
small (in the path-frozen regime, μ∗ < 1) or exponentially
large (in the path-molten insulator μ = 1). The parameter ξ

instead is tuned such as to control the path amplitudes and
prevent unphysical, exponentially growing contributions to
the decay rate arising in the intermittent metal (which requires
a nontrivial value ξ ∗ < 1).

These parameters are thus seen to take rather different
roles. While at first sight it may look as if the transition
from an intermittent metal to a nonresonating insulator, as
signaled by the crossing of ξ = 1, corresponds to some kind
of glass transition, due to its formal resemblance to freezing
transitions in replica theory, this is actually not the case. At
a glass transition, the number of metastable configurational
valleys contributing significantly to the total free energy val-
leys shrinks from exponentially many to O(1). In our case,
the role of configurational valleys of a directed polymer is
assumed by distinct decay paths, and the corresponding un-
freezing transition is indicated by μ∗ reaching 1. In contrast,
ξ ∗ becoming smaller than one indicates the vanishing of the
dominant decay rate observed in rare thermal fluctuations,
xSP = 0, but it does not indicate the vanishing of the loga-
rithm of the associated probability �(xSP) (which is what one
might expect from a freezing transition). Indeed, �(xSP) is still
strictly positive at the transition to the resonating insulator.

VI. THREE INSULATING PHASES BROUGHT ABOUT
BY THERMAL FLUCTUATIONS

In Fig. 3 (top) we plot the decay constants γF , γL for a
Bethe lattice with branching number k = 2 (each site having
k + 1 = 3 neighbors on the lattice) as a function of disorder.
Figure 3 (bottom) shows the corresponding evolution of the
liquid parameters μ, ξ , as well as the parameter η in the
frozen case, as defined in the previous section. We refer to
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FIG. 3. (Top) Decay constants γF,L at T → ∞ in a frozen and
liquid environment, respectively, on a Bethe lattice with branching
number k = 2, while every lattice spin couples to a separate envi-
ronment consisting of N � 1 spins. The decay constants are plotted
as a function of the ratio between the effective disorder strength√

W 2 + J2
z , which controls the width of the distribution P(h) of the

local fields, and the amplitude of quantum fluctuations J⊥. Param-
eters are Jz = 1 = J⊥. Localization is always stronger in a frozen
environment, as seen by the strict inequality γF > γL , which holds
all the way to the delocalization transition at

√
W 2 + J2

z /J⊥ = 5.54.
Close to the metallic phase the insulator with liquid environment is
in the intermittent metal phase. As the effective disorder increases,
γL undergoes first a path-freezing transition at

√
W 2 + J2

z /J⊥ =
10.55, and subsequently a transition to a nonresonating insulator at√

W 2 + J2
z /J⊥ = 27.82. (Bottom) Evolution of the parameter η∗ that

extremizes �F (η) for a frozen environment, and of the parameters
μ∗, ξ ∗ maximizing the functional �L , which captures the decay rate
in a liquid environment. A nonresonating insulator is identified by
ξ ∗ = 1, while the path-unfrozen insulator has μ∗ = 1. These two
phases are always separated by an intermediate phase with nontrivial
μ∗, ξ ∗ < 1 corresponding to an intermittently metallic, but path-
frozen insulator. At the delocalization transition, ξ ∗ = η∗.

Appendix B for details about the computation. While a frozen
environment only gives rise to a single insulating phase, the
situation of a fluctuating environment is much richer. From
the plots one can see that:

(i) Upon decreasing the disorder or increasing the quan-
tum fluctuations, the transition from a nonresonating insulator
to an intermittent metal is preserved from the 1d situation

discussed in Sec. IV, even though now there are exponentially
many paths available for decay. This transition within the
insulator probably comes closest to the thermal fluctuation-
induced transition sought in Ref. [28].

(ii) The liquid decay rate undergoes a further transition
within the intermittent metal phase. It can be identified with
an unfreezing transition of the corresponding directed poly-
mer problem. Obviously, such a configurational unfreezing
cannot occur in a 1d setting where only a single decay path
is available. This transition between a path-frozen and an
unfrozen regime always occurs within the intermittent metal
regime, as we prove in Appendix C. In contrast, in a system
with a frozen environment the dominant decay always occurs
along the same or the same few paths [71]. It is the thermal
fluctuations of environmental spins and the related changes in
local fields that make the dominant decay paths of a system
with liquid environment fluctuate. This path melting always
takes place in a boundary regime adjacent to the transition to
the metal. We will come back to the properties of this phase
in Sec. VII.

(iii) The delocalization transition occurs at the same value
of parameters, whether a frozen or a liquid environment are
considered. This remains unchanged from the 1d case of a sin-
gle path. The transition always occurs out of the path-unfrozen
intermittent metal phase, where the parameter μ = 1 signals
the contribution of exponentially many paths. This is proven
in Appendix C. As we argued earlier, everywhere within the
insulator the strict inequality γF > γL holds.

We will discuss how the different insulating phases could
be distinguished by physical observables in Sec. VII.

The analysis leading to Fig. 3 has been carried out at infi-
nite temperature, which maximizes the effect of fluctuations
of neighboring spins. We have focused on a model where the
temperature has the sole effect of controlling the strength of
fluctuations of local fields, while it does not affect the global
distribution of local fields P(h) in Eq. (5). We recall that, as
a consequence, the critical point that separates the localized
from the delocalized phase is independent of temperature,
since it depends only on the global P(h). Indeed, the delo-
calization in frozen and liquid environments coincide, and the
transition in a frozen environment is a functional of the global
P(h) alone, as can be seen from Eq. (40). In contrast, the phase
boundaries between the three insulating phases in a liquid
environment are sensitive to the strength of thermal fluctua-
tions, as shown in Fig. 4. The temperature dependence arises
through the T -dependent width of the distribution P(h|E ),
which affects the effective locators ωξ relevant in the fluctuat-
ing environment.

The intermittent metal phase shrinks with decreasing
temperature. This is expected since the environmental fluctua-
tions, which promote those phases weaken as the temperature
decreases. Both intermittent metallic phases disappear in the
limit T → 0. At the technical level this is reflected by the
annealed calculation reducing to the quenched one.

We observe that temperature has a strong impact on the
location of the resonance and path-freezing transitions. This
is so even if we take the coupling to the neighbors Jz to equal
the spin hopping J⊥, which is significantly smaller than the
disorder W needed for an insulator (cf. Fig. 4). One might thus
expect temperature effects to be mild, as they shift local fields
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FIG. 4. Temperature dependence of the critical values of the con-
trol parameter

√
W 2 + J2

z /J⊥ separating the three distinct insulating
phases in a fluctuating environment. The coupling to neighboring
spins Jz is taken equal to the spin hopping amplitude J⊥, Jz = J⊥ = 1.
The dashed-black line indicates the delocalization transition, which
is independent of temperature. The intermittent metallic phases (path
frozen and fluctuating) shrink to zero in the limit T → 0. Points are
the results of the numerical calculation, while the lines are fitting
curves.

only by quantities of order Jz as compared to the width of their
global distribution W . However, the dominant locators on the
dominating paths have still denominators that are significantly
smaller than W , and those react sensitively to shifts of the
local field due to fluctuations in the thermal environment [72].

No coexistence of frozen and liquid phases

Let us now address the question of the possibility of a
coexistence of frozen and liquid phases in this class of models.
With the above results at hand we can now show explicitly that
this is excluded since the two decay rates γF , γL vanish exactly
at the same value of the hopping and disorder parameters. To
prove this, since γF � γL � 0, it suffices to show that γL = 0
necessarily implies γF = 0. As we show in Appendix C, in
the presence of a liquid environment the transition to delocal-
ization always occurs inside a path-unfrozen phase, where the
parameter μ takes the value μ = 1. Setting μ = 1 in (59) the
liquid delocalization transition (γL = 0) requires

γL = − ln

[
k
∫

dEρ(E ) ωξ∗

]

= − ln

[
k
∫

dh P(h)
∣∣∣J⊥

h

∣∣∣2ξ∗]
= 0, (66)

where P(h) is the unconstrained distribution defined in
Eq. (37). Here ξ ∗ is fixed by the condition

∫
dh P(h) ln

∣∣∣J⊥
h

∣∣∣2∣∣∣J⊥
h

∣∣∣2ξ∗

= 0. (67)

Assuming ξ ∗ > 0 we can divide each of these two vanishing
quantities by some strictly positive quantities to obtain the

equation

ln
[
k
∫

dh P(h)
∣∣ J⊥

h

∣∣2ξ∗]
ξ ∗ =

∫
dh P(h) ln

∣∣ J⊥
h

∣∣2∣∣ J⊥
h

∣∣2ξ∗

∫
dh P(h)

∣∣ J⊥
h

∣∣2ξ∗ , (68)

which is equivalent to the condition for a maximum of the
frozen decay functional �F ,

η2 d

dη
�F (η)|η=ξ∗ = 0. (69)

This means that when the liquid decay vanishes, γL = 0, the
extremizers ξ ∗ for the liquid case and μ∗ for the frozen case
coincide, ξ ∗ = η∗. This is seen in the explicit solution of Fig. 3
(bottom). The frozen decay is given by Eq. (40). By virtue
of Eq. (67) it vanishes as well, γF = 0, which completes our
proof. We conclude that the sequence of transitions shown
in Fig. 3 and the coincidence of liquid and frozen delocal-
ization hold for any choice of model parameters (such as
the connectivity k, e.g.). We recall that our treatment of the
decay is only approximate in that it is essentially a forward
approximation where small denominators are suitably regular-
ized. This captures only approximately the (anti)correlations
between the locators at subsequent sites along the path that are
induced by the self-energy corrections [73]. However, despite
this approximation, we find that at the localization transition
the values of η∗ = ξ ∗ come close to the exact value of 1/2,
which follows from a symmetry argument [47].

The physical reason for the coincidence of the liquid and
the frozen delocalization transitions, γL = γF = 0 is rela-
tively straightforward. For any given thermal realization of
the neighbor spin configuration, the local fields are as in a
frozen configuration. For static configurations it is known that
on a Cayley tree there is an optimal path that dominates the
decay. The thermally fluctuating problem can have a non-
exponential decay rate only, if a typical thermal realization
of neighbor spin configurations gives rise to nonexponential
decay, otherwise nonexponential decay would only occur in
exponentially rare fluctuations. However, the requirement that
typical configurations give rise to nonexponential decay is
exactly the same as that for delocalization within a frozen
environment.

VII. PHENOMENOLOGY OF THE INSULATING PHASES

A. Fluctuating decay paths: Path chaos

Our analysis in a liquid environment reveals the fact that
thermal fluctuations of the neighbor spin configurations can
favor different paths to become the instantaneously optimal
decay channels. In other words, in the course of time the
dominating decay path fluctuates, because the effective local
field distribution fluctuates. However, this happens only close
enough to the delocalization transition, in the phase that we
dubbed the path-unfrozen phase. This is a close analog of
a phenomenon observed in numerical studies of Anderson
localization, where optimal decay paths were found to be
very sensitive to changes in the disorder potential [71]. In
the closely related classical problem of a directed polymer in
random media, and more generally in spin glasses and similar
glassy systems, a related kind of effect is known under the
notion of “chaos” [32–34]: The optimal (ground-state) config-
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uration of the glassy system is very sensitive to changes in the
disorder realization, or to control parameters such as the tem-
perature, in such a way that sudden jumps of the ground-state
configuration as a function of those parameters may occur,
provided the system has enough time to equilibrate.

The last point constitutes an important difference between
quantum localization problems and classical glasses, however.
The way these two classes of systems explore the available
space (i.e., the various paths for our localization problem)
is fundamentally different. A glassy system usually has to
overcome huge energy barriers in configuration space to settle
into a new low energy configuration. This may take extremely
long time, and thus often results in the system falling out of
equilibrium, displaying aging, etc. This renders the observa-
tion of equilibrium chaos in glasses very challenging [74].
The analog of chaos in quantum localization problems in-
stead is probed very differently. By its very nature, quantum
mechanics probes all available decay paths simultaneously
and instantaneously, like in a tunneling problem with parallel
tunneling channels. In particular, the system usually retains no
memory of optimal paths that were favored by past disorder
configurations that arise in the course of fluctuations. Insofar
the decay channels react instantaneously to the fluctuations in
the disorder realization and thus offer an interesting experi-
mental route to studying chaos phenomena, which are much
harder to probe in their thermodynamic analogues.

B. Experimental distinction of insulating phases

It is interesting to discuss how the three insulating phases
could be distinguished by experimental observables. For elec-
trons, or other excitations carrying a conserved charge, the
decay rates are related to the system’s conductance across
a mesoscopic sample, if direct tunneling across the sample
is relevant. In path-frozen phases the conductance is essen-
tially dominated by a unique optimal path connecting the two
leads. (In finite dimensions, other than on a Bethe lattice,
such an optimal path is only defined up to small, spatially
local fluctuations.) Accordingly, the conductance is strongly
susceptible to disturbances that alter the local fields on that
path. Such local perturbations could be produced, e.g., by
an atomically sized tunneling tip in the close vicinity of the
surface of a 2D sample. By scanning the sample surface later-
ally (parallel to the lead interfaces) one may expect a sudden
spike or drop in conductance as the tip approaches the domi-
nating conductance channel. In an unfrozen, path-fluctuating
insulator instead, the dominant path is constantly fluctuating
itself and any static local disturbance has little effect on the
conductance.

Local disturbances in the path-frozen phase of Anderson
insulators can generally modify the localization properties of
excitations, in case they happen to affect the optimal propaga-
tion channel of a relevant single particle wavefunction. It has
recently been shown in single particle problems that indeed
optimal decay paths can abruptly change as the potential land-
scape is altered [71], and analogies to closely related shocks
and avalanches in glassy directed polymer problems have
been drawn. It might be interesting to study the continuously
occurring “wave-function shocks” due to thermal fluctuations

and the associated spatial range of paths that contribute to the
conductance.

Probing the transition between the intermittent metal and
the nonresonating regimes is more subtle. Indeed, it requires
to determine whether the exponentially rare fluctuations that
dominate the average (annealed) conductance correspond to
a decay rate that is itself exponentially small or whether it
is O(1), meaning that the sample is intermittently metallic.
The occurrence of a metallic-like fluctuation, even just over
brief time windows, opens at least in principle the possibil-
ity for nonnegligible, sample-spanning coherence effects in
the conductance. In particular, Fabry-Pérot-like oscillations
of the conductance as a function of the distance between
two reflecting barriers inside the sample or at its bound-
aries, can occur with significant amplitude only if, at least
for some instants of time, the transmission from barrier to
barrier is quasimetallic and multiply reflected waves can po-
tentially interfere with each other. In contrast, more local
quantum interference effects, such as weak localization due to
a sample-threading magnetic flux and the ensuing alteration
of conductance would hardly allow to distinguish between
a nonresonating insulator and an intermittent metal. Indeed,
both regimes are effected by magnetic fields. In fact, strong
insulators are usually disproportionately more affected than
weak ones, since local interference effects are exponentially
amplified in strong insulators [50,75,76].

The transition from nonresonating insulator to intermittent
metal also shows in a kink in the exponential decay of the
conductance with sample length. Likewise one may expect the
conductance noise to bear a signature of the transition, since
the conductance fluctuations in the resonating insulator start to
be more strongly bounded from above. In this context it would
be interesting to revisit the reported growth and saturation of
the Hooge parameter within the insulating phase [77].

VIII. CONCLUSIONS

We have analyzed the decay rate of local excitations in-
teracting with thermally fluctuating environmental spins. One
of our driving questions was to understand whether internally
generated fluctuations are able to shift the boundary of sta-
bility of the localized phase, a scenario that would entail the
possibility of a coexistence regime between a delocalized and
a (possibly metastable, but long-lived) localized phase in the
vicinity of the localization-delocalization transition. It would
also open the possibility to tune delocalization by tempera-
ture, via a mechanism that is different from the one usually
discussed in the context of MBL [2,3], an idea originally
raised in Ref. [28].

Our analysis has indeed confirmed that the annealed rate of
decay (averaging over thermal fluctuations of the neighboring
spins) is always bigger than the quenched decay rate (that of a
typical, frozen environmental configuration) because the fluc-
tuation average is dominated by rare thermal configurations.
However, the difference between the two rates diminishes
upon approaching the metallic regime and disappears exactly
at the delocalization transition. The location of that transition
is therefore independent on whether the fluctuations are taken
into account or not, and the putative coexistence or bistability
scenario is ruled out.
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Nevertheless, we find that thermal fluctuations induce a
rich phenomenology within the insulating phase. In general
the latter hosts three different regimes, separated by two sharp
transitions (at the level of our approximate description). All
three regimes are characterized by an excitation decay rate
that decreases exponentially in the system size. At strongest
disorder, the system is a nonresonating insulator, where even
exponentially rare, optimal fluctuations of the neighbor spin
configurations give rise to exponentially weak decay. In other
words, the system is insulating even in those rare moments
in which the environment is particularly favorable and which
therefore dominate the decay. In contrast, in the intermittent
but path-frozen metal the annealed time averaged decay rate
is dominated by rare fluctuations of the neighboring spins that
induce metallic-like behavior; nevertheless, their exponential
rareness guarantees that the system is still insulating in the
sense that the time-averaged decay rate is exponentially small
in the system size. As in the nonresonating phase, the dom-
inant decay path remains fixed and does not change, even
though the environment fluctuates. This changes closer to the
delocalization transition, where the analog of a melting transi-
tion occurs and an intermittent metal with fluctuating optimal
paths emerges. In this least insulating phase an exponentially
large number of paths contribute to the time-averaged decay
(we recall that optimal paths are sharply defined in a Cayley
tree approximation to real space, while in finite dimensional
samples spatially local fluctuations around a dominant de-
cay path always contribute as well, giving a finite width to
the dominant channel). It is still true that at every instant
of time, if one were to freeze the configuration of the en-
vironmental spins, one path would essentially dominate the
decay. However, this dominant path is now strongly sensitive
to the thermally fluctuating effective local fields, in an anal-
ogous manner as ground states of glassy systems can change
substantially with small modifications to the couplings or ther-
modynamic parameters. Here, we can prove for the model of
a Cayley tree with neighboring spins that such a path-chaotic
phase generically exists close to the delocalization transition.
As the latter is reached, the decay rate becomes order O(1),
i.e., independent of the system size. As mentioned above,
its location does not depend on whether thermal fluctuations
are accounted for or whether the environment is taken to be
frozen.

Let us compare our results to previous studies of similar
static problems. It was found that the transmission through
a wide-barrier hosting dilute, randomly positioned, but es-
sentially identical impurities may be dominated by resonant
transmission [11,78,79], depending on the energy of the prop-
agating particle. This is analogous to our dichotomy between
intermittent metal and nonresonating insulator, whereby the
spatial average over the broad junction replaces our temporal
average. However, we have considered a more general model,
with random impurity potentials, which allows for a transition
between nonresonant and rarely resonant insulator, even at
transmission energies belonging to the support of the random
Hamiltonian. In our case the transition is tuned by the ratio of
hopping and disorder strength, rather than by the energy. In
contrast to static problems, our fluctuating setting entails the
new possibility of a path-chaotic phase within the intermittent
metal.

We point out that despite some superficial similarities, the
transition associated with the unfreezing of the dominant path
is different in nature from the crossover or putative transition,
between a fully ergodic phase and nonergodic delocalized
phase, which has been controversially discussed, especially
for noninteracting problems on Bethe lattices and random reg-
ular graphs [73,80–88]. Indeed, the path-unfreezing transition
we have identified in this paper occurs within the insulating
phase, even though it requires interactions with liquid-like
fluctuating degrees of freedom. This transition entails a non-
analytic behavior of the spatial decay constant γL governing
the decay rates of excitations in the thermodynamic limit (akin
to localization lengths or Lyapunov exponents in noninter-
acting systems). In contrast, the putative transition between
an ergodic and possibly nonergodic delocalized phase, which
was suggested to map the unfreezing of an associated effective
polymer problem [86], takes place within the metallic phase
where excitations are delocalized, even though transport ap-
pears to be anomalously slow [89,90].

We recall that in the model discussed here the local fields
in (8) are sums of uncorrelated contributions from environ-
mental spins. However, in more realistic models correlations
may establish among the environmental spins at low temper-
ature. Those can induce a significant temperature dependence
of the global distribution of fields, and thus affect the evolu-
tion of the insulating phases with temperature. If on top of that
long-range interactions play a crucial role, new phenomena
such as pair-delocalization and spectral diffusion come into
play [91–95].
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APPENDIX A: DIRECTED POLYMER IN RANDOM
MEDIUM: A RECAP

The free-energy density of a directed polymer on the Bethe
lattice has been computed explicitly in Refs. [30,96]. On a
finite Cayley tree of depth R, the partition function of the
polymer is given by a sum over all paths P connecting the root
0 to the boundary BR at distance R, and it takes the generic
form

Zβ,R =
∑

P:0→BR

∏
s∈P

ws, (A1)

where ws = e−βEs is the contribution of the site s, with β the
inverse temperature and Es a local energy. For a single-particle
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Anderson problem on the Bethe lattice with Hamiltonian

H =
∑

i

εini − J⊥
∑
〈i, j〉

(c†
i c j + c†

j ci ), (A2)

the decay rate �R computed in the forward approximation

�R =
∑

P:0→BR

∏
s∈P

∣∣∣J⊥
εs

∣∣∣2 (A3)

has exactly the form (A1) with β = 1 and Es = − ln |J⊥/εs|2,
where the εs are the random local potentials with distribution
f (ε). We thus set ws = |J⊥/εs|2. The decay constant γ can be
identified with the free-energy density of the polymer,

γ = − lim
R→∞

〈ln �R〉
R

. (A4)

The exact results in Ref. [30] show that γ is fully determined
by the function

ψ (η) = −1

η
ln

[
k
∫

dε f (ε)[ws(ε)]η
]
, (A5)

where k is the branching number of the Cayley tree. This can
be recognized as the replicated free energy (per unit length) in
a replica approach.

Let us call η∗ the argument that maximizes ψ , satisfying

d

dη
ψ (η)|η=η∗ = 0. (A6)

It was shown in Ref. [30] that

γ =
{
ψ (η∗) if η∗ � 1
ψ (1) if η∗ > 1,

(A7)

in agreement with the heuristic recipe that the replicated free
energy should be maximized over the domain 0 � η � 1. The
first regime corresponds to the polymer being in its frozen
phase (with broken replica symmetry), in which the partition
function (A1) is dominated by a subexponential number of
paths.

As discussed in the main text, the spatial decay constant in
a frozen environment can be obtained as a straightforward ap-
plication of these identities, by replacing the distribution f (ε)
with that of local fields P(h). In contrast, in the presence of a
fluctuating environment these identities cannot be generalized
straightforwardly, as one needs to enforce the physical con-
straint that the single path weights are bounded by 1. In that
case, it proves convenient to exploit a variational argument to
determine the distribution of the quenched energy variables
along the paths that dominate the decay rate. Here we recall
this argument in the simpler setting of a directed polymer with
no constraints, showing how it allows to recover (A7).

Let us assume that (A3) is dominated by a single path
among the kR paths contributing to the sum. The local fields εs

along the dominating, optimal path have an atypical statistics:
they are not a typical sample from the distribution f (ε), but
rather look like a sample from a biased distribution (to be
determined) that we denote by f opt (ε). The decay rate along
this path is simply given by

γ ≡ γ { f opt (ε)} = −
∫

dε f opt (ε) ln[w(ε)]. (A8)

However, to introduce some formal steps and functions whose
more complex equivalents are used in the main text, we briefly
derive it here by a formal detour. Denoting by ws the weights
along the optimal path, we can write the decay rate as

�R ≈
∫

dxe−Rxδ

(
x + 1

R

R∑
s=1

ln ws

)

= R
∫

dxe−Rx
∫

dξeiξ Rx+iξ
∑R

s=1 ln ws . (A9)

We introduce the function

�(z) = 1

R

R∑
s=1

ln wz
s, (A10)

and its average with respect to the biased distribution

�(z) =
∫

dε f opt (ε) ln[w(ε)]z. (A11)

Taking the saddle point over x in (A9) we obtain that iξSP = 1,
and x drops out of the saddle point value. One then finds

γ = − lim
R→∞

ln �R

R
= −�(1), (A12)

which is equivalent to Eq. (A8).
In order to determine the unknown biased distribution

f opt (ε), it suffices to maximize the functional Eq. (A8) subject
to the normalization constraint and the requirement that the
Kullback-Leibler divergence equal ln(k). That is, we should
maximize

F[ f opt, μ1, μ2]

= −
∫

dε f opt (ε) ln[w(ε)]

+μ1

(∫
dε f opt (ε) ln

f opt (ε)

f (ε)
− ln k

)

+μ2

(∫
dε f opt (ε) − 1

)
, (A13)

where the Lagrange multiplier μ1 enforces that the optimal
path occurs with a probability scaling as ∼k−R, see (38) in the
main text, and μ2 ensures the normalization of f opt (ε). The
solution to

δF[ f opt, μ1, μ2]

δ f opt
= 0 = ∂F[ f opt, μ1, μ2]

∂μ2
(A14)

reads

f opt (ε) = f (ε)[w(ε)]
1

μ1∫
dε f (ε) [w(ε)]

1
μ1

. (A15)

It remains to optimize with respect to μ1. Upon injecting the
form of Eq. (A15) into (A13) and changing notation to η ≡
1/μ1, we find F (μ1 = 1/η) = ψ (η), where ψ (η) was given
in (A5). We thus recover the exact result γ = ψ (η∗), where η∗
satisfies (A6), under the assumption that one path dominates
the sum �R.

However, as η∗ → 1, this assumption breaks down [96]
and the system leaves the frozen phase. At that point the
quenched average (A4) becomes equivalent to the annealed
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one, meaning that we can replace 〈ln �R〉 by ln〈�R〉. This
yields the decay rate

γ = − lim
R→∞

ln〈�R〉
R

= − ln

[
k
∫

dε f (ε)
∣∣∣J⊥

ε

∣∣∣2], (A16)

which equals ψ (η = 1).

APPENDIX B: DETAILS OF THE EVALUATION OF γL

In this Appendix we provide details on the explicit eval-
uation of the decay constant γL in a liquid environment, the
result of which is shown in Fig. 3 for a particular choice of
parameters (Jz = 1 = J⊥ and infinite temperature β = 0). The
main subtlety in the calculation consists in regularizing the
integral,

ωξ (E ) =
∫ ∞

−∞
dh

exp
(− [h−E]2

2Vβ

)
√

2πVβ

e2ξ ln | J⊥
h |, (B1)

which has a divergence for ξ > 1/2. Following the original
argument in [1], this is regularized by putting a cutoff around
h = 0 on a scale � representing the typical value of self-
energy corrections. In our setting, the relevant scale is � ∼
J2
⊥/
√

J2
z + W 2. We therefore restrict the average in (B1) to

the domain R� = R/[−�,�], and for simplicity, we neglect
the correction to the normalization factor due to the cutoff �.
We now provide the explicit expression of the function �L

obtained with this regularization.
The effective locator becomes

ωξ (E ) = J2ξ

⊥√
2πVβ

∫
R�

dh
exp

(− [h−E]2

2Vβ

)
h2ξ

= 1√
π

(
J2
⊥

2Vβ

)ξ

×
[

Iξ

( E√
2Vβ

,
�√
2Vβ

)
+ Iξ

(
− E√

2Vβ

,
�√
2Vβ

)]
,

(B2)

where we introduced

Iξ (a, u) =
∫ ∞

u
dh

e−(h+a)2

h2ξ
.

A simple power expansion of the term e−2ha leads to the
following representation:

ωξ (E ) = 2 fξ (�) e
− E2

2Vβ

√
π

(
J2
⊥

2Vβ

)ξ

×
[

1 +
∞∑

k=1

�
( 2k−2ξ+1

2 , �2

2Vβ

)
fξ 21−kV k

β (2k)!
E2k

]
, (B3)

where the coefficients of the expansion contain the incomplete
Gamma function

�(s, x) =
∫ ∞

x
t s−1 e−t dt . (B4)

The term

fξ (�) = 1

2
�

(
1

2
− ξ,

�2

2Vβ

)
(B5)

is the source of the divergence as ξ → 1/2 if no regularizer
is present, � = 0. For k � 1 and ξ � 1 the coefficients of the

expansion (B3) remain regular for � → 0, and we therefore
approximate them with their � → 0 limit. This allows us to
resum the series into a function

�1(E, ξ ) ≡ 1

2 fξ (�)

∞∑
k=1

2k�
(
k − ξ + 1

2

)
V k

β (2k)!
E2k

=
2�
(

3
2 − ξ

)(
1 − 1F1

(
1
2 − ξ ; 1

2 ; E2

2Vβ

))
2 fξ (�)(2ξ − 1)

, (B6)

which remains regular when ξ → 1/2,� → 0. Therefore

[ωξ ]μ = [λ�(ξ )]μe
− μE2

2Vβ [1 + �1(E, ξ )]μ, (B7)

where

λ�(ξ ) = 2 fξ (�)√
π

(
J2
⊥

2Vβ

)ξ

(B8)

accounts for the regularized singularity. With the aid of these
formulas one obtains

�L(μ, ξ ) = − 1

μ
ln

{
k
∫

dEρ(E )e
− μE2

2Vβ [1 + �1(E, ξ )]μ
}

− ln[λ�(ξ )], (B9)

which can be evaluated numerically as a function of μ, ξ .
As discussed in the main text, determining the relevant

value of the parameter ξ requires to compute the sign of xSP

given in (51). Once (58) is used, Eq. (51) is equivalent to

xSP = −
∫

dE ρ(E )[ω1(E )]μ
∗−1 ∂

∂z ωz(E )|z=1∫
dE ρ(E )[ω1(E )]μ∗ , (B10)

where explicitly

∂ωz

∂z

∣∣∣
z=1

= ln

(
J2
⊥

2Vβ

)
ω1 + J2

⊥√
πVβ

∂ fz(�)

∂z

∣∣∣
z=1

ω1

+ J2
⊥ f1(�)√

πVβ

e
− E2

2Vβ

∞∑
k=1

α̃kE2k (B11)

with coefficients

α̃k = 2k−1

f1(�)V k
β (2k)!

∂

∂z
�

(
2k − 2z + 1

2
,

�2

2Vβ

)∣∣∣
z=1

. (B12)

It can be checked that upon taking the limit � → 0 of the
coefficients of the series:

�2(E ) ≡
∞∑

k=1

α̃kE2k, (B13)

the latter can be resummed explicitly, too. Plugging the result-
ing expressions into (B10) and integrating over E allows one
to evaluate explicitly xSP as well.

The evaluation of the decay constant in a frozen envi-
ronment γF is straightforward using the formula (40); to be
consistent with the treatment in the liquid environment, we
regularize the integral in (40) by restricting the integration to
the same domain R�.
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APPENDIX C: ON THE LOCATION OF THE
PATH-FREEZING TRANSITION IN A LIQUID

ENVIRONMENT

In this Appendix we show that the succession of phases
and transitions as seen in Fig. 3 for a system with a liq-
uid environment is generic. In particular, this means that the
path-unfreezing transition (where μ∗ → 1) always takes place
within the intermittent metal phase, between the localization
transition and the transition toward the nonresonating insula-
tor. This follows indeed from simple convexity arguments.

We start by showing that the path-freezing transition al-
ways occurs within the intermittent metal phase. This is
equivalent to stating that the nonresonating insulator is always
path-frozen. We show this by way of contradiction: Deep
in the insulator phase, we are in the nonresonating phase,
dominated by a single path and μ∗ < 1. We now assume
that for some parameters the solution of (60) reaches μ∗ = 1,
while we are still in the nonresonating insulator, as defined by
the condition that the dominating fluctuations have a positive
decay rate, xSP > 0, which requires to set ξ = 1 in �L(μ, ξ ).
Under these assumptions, using (51) together with (58) one
obtains the expression

xSP = −
∫

dE ρ(E )
[ ∫

dh P(h|E )
∣∣ J⊥

h

∣∣2 ln
∣∣ J⊥

h

∣∣2]∫
dEρ(E ) ω1(E )

, (C1)

with ω1(E ) defined in Eq. (49). For a generic convex function
F , the following inequality holds:

∫
dh P(h|E )F (g(h)) � F

(∫
dh P(h|E ) g(h)

)
, (C2)

which is a strict inequality for F strictly convex (provided
g(h) is not a constant or, equivalently, that the density P(h|E )
does not collapse to a delta distribution). Exploiting this for
F (y) = y ln(y) (which is strictly convex for y > 0) and g(h) =
|J⊥/h|2, we obtain

−xSP

>

∫
dE ρ(E )

[ ∫
dh P(h|E )

∣∣ J⊥
h

∣∣2] ln
[ ∫

dh P(h|E )
∣∣ J⊥

h

∣∣2]∫
dEρ(E ) ω1(E )

=
∫

dE ρ(E )ω1(E ) ln [ω1(E )]∫
dEρ(E ) ω1(E )

. (C3)

The derivative in (60) can be written as

∂�L(μ, ξ )

∂μ
= 1

μ

(
�L(μ, ξ ) −

∫
dEρ(E ) ln[ωξ ]ωμ

ξ∫
dEρ(E )ωμ

ξ

)
. (C4)

Under our assumptions, μ∗ = 1 is a solution of ∂�L/∂μ = 0
with ξ = 1, thus

�L(1, ξ ) −
∫

dEρ(E ) ωξ ln ωξ∫
dEρ(E ) ωξ

∣∣∣
ξ=1

= 0. (C5)

Using that the liquid decay rate satisfies γL = �(μ∗, ξ ∗) (with
here μ∗ = ξ ∗ = 1), together with Eq. (C3) we obtain

− xSP > γL > 0, (C6)

since everywhere in the insulating phase γL > 0. This is a
contradiction to our starting assumption that xSP was nonneg-
ative. Hence, we conclude that being in the nonresonating
insulator (xSP > 0) is incompatible with reaching the path
unfreezing transition (μ∗ → 1), which can thus only occur in
the intermittent metal phase. A simple extension of these ar-
guments to an arbitrary μ∗ �= 1 satisfying (60) shows that the
delocalization transition (γL → 0) can only occur within the
intermittent metal phase (ξ < 1). Namely, imposing γL = 0,
while fixing the parameter ξ to ξ = 1, implies that the decay
constant xSP as defined in Eq. (C1) becomes negative and thus
is unphysical.

Let us now turn to the localization transition, and show
that path-unfreezing (as signaled by μ∗ → 1) always precedes
it within the insulator. Technically, we need to show that,
upon approaching delocalization the maximizing μ∗ reaches
1 before γL → 0. This will imply that exactly at the transition,
μ∗ can no longer be chosen as a maximizer of �L(μ, ξ ) with
μ∗ < 1; instead, the maximum of �L has to be assumed on
the boundary, μ∗ = 1.

Let us now show that μ∗ → 1 strictly within the insulator.
Within the intermittent metal phase ξ ∗ is determined by the
condition [cf. Eq. (55)]

∫
dEρ(E )ωμ∗−1

ξ∗ (E )

[∫
dhP(h|E )

∣∣∣J⊥
h

∣∣∣2ξ∗

ln
∣∣∣J⊥

h

∣∣∣2] = 0.

(C7)
The inequality (C2) applied to g(h) = |J⊥/h|2ξ∗

and F (y) =
y ln y (for y > 0) gives

∫
dhP(h|E )

∣∣∣J⊥
h

∣∣∣2ξ∗

ln
∣∣∣J⊥

h

∣∣∣2ξ∗

> ωξ∗ (E ) ln[ωξ∗ (E )], (C8)

which upon injection into Eq.(C7) implies

∫
dEρ(E )ωμ∗

ξ∗ (E ) ln[ωξ∗ (E )] < 0. (C9)

From the expression (C4) for the derivative ∂�L/∂μ we con-
clude that the value of μ∗ for which γL = �L(μ∗, ξ ∗) = 0 can
not be a stationary point of �L, since (C9) implies

∂�L(μ, ξ )

∂μ

∣∣∣
μ∗,ξ∗

= − 1

μ∗

∫
dEρ(E ) ln[ωξ∗ ]ωμ∗

ξ∗∫
dEρ(E )ωμ∗

ξ∗
> 0. (C10)

Therefore, at the delocalization transition μ∗ must lie at the
right boundary of the admissible interval 0 � μ � 1, i.e.,
μ∗ = 1. From this it follows that the delocalized phase is
always adjacent to a path-unfrozen, intermittently metallic
insulating phase.
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