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Abstract
This paper focuses on characterizing the energy profile along pathways con-
necting different regions of configuration space in the context of a prototypical
glass model, the pure spherical p-spin model with p= 3. The study investig-
ates pairs of stationary points (local minima or rank-1 saddles), analyzing the
energy profile along geodesic paths and comparing them with ‘perturbed’ path-
ways correlated to the landscape curvature. The goal is to assess the extent to
which information from the local Hessian matrices around stationary points can
identify paths with lower energy barriers. Surprisingly, unlike findings in other
systems, the direction of softest local curvature is not a reliable predictor of
low-energy paths, except in the case in which the direction of softest curvature
corresponds to an isolated mode of the Hessian. However, other information
encoded in the local Hessian does allow the identification of pathways associ-
ated with lower energy barriers. We conclude commenting on implications for
the system’s activated dynamics.

Keywords: spin glass, random matrix theory, complex random landscapes,
disordered systems

Understanding the statistical properties of random energy or cost landscapes in high dimen-
sions is a rather ubiquitous problem. In several cases one is interested in characterizing the pro-
file of the landscape along pathways connecting different regions of configuration space; these
regions may correspond to different local minima of an energy function [1, 2] (equivalently,
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to fitness local maxima [3, 4]), or to different configurations reached by algorithms optimiz-
ing a cost function [5–7]. In many situations, in particular in several glassy systems [8–10],
the height of the typical effective barriers crossed during the dynamics increases at low tem-
peratures, thus leading to super-Arrhenius behaviors [11]. Characterizing the paths crossing
these barriers and connecting low-energy configurations is a major challenge to develop the
theory of glassy dynamics. Note that there are also other kinds of complex high-dimensional
landscapes: some with a preferred minimum, as in the problem of protein folding [12], or with
many flat minima separated by low barriers, as in machine learning [5, 7, 13, 14]. Here, we
focus on the first class of energy landscapes and address the challenge outlined above.

We consider a prototypical glass model, the spherical p-spin model with p= 3, given by
a random Gaussian function defined on a high-dimensional sphere [15, 16]. This landscape
exhibits a multiplicity of stationary points (local minima, but also saddles) that are isolated
in configuration space, and separated by energy barriers. We consider pairs of such stationary
points and characterize the energy profile along simple paths interpolating between them. In
particular, we compute the typical energy profile along the geodesic path, determining how the
resulting energy barrier depends on the energy of the stationary points and on their distance
in configuration space. We then compare the geodesic energy profile with the profile along
‘perturbed’ pathways, which follow directions in configuration space that are correlated to the
landscape curvature around one of the two stationary points.

Our goal is to investigate to what extent one can identify good pathways (i.e. paths asso-
ciated with lower energy barriers) using the information on the landscape around the two
stationary points, encoded in their local Hessian. This question is motivated by studies of
finite-dimensional systems of jammed and mildly supercooled particles. For the former, the
softest Hessian modes at a given configuration provide directions toward low energy barriers
for particle rearrangements [17]. For the latter, the spatial amplitudes of the softest Hessian
modes correlate with the regions where irreversible rearrangements of particles take place [18].
Contrary to these findings, we show that in the case of the purely random landscape we con-
sider in this work, the direction of softest local curvature is not a predictor of paths with lower
energy barriers, except in the case in which the local Hessian has an isolated mode. However,
we argue that having access to the whole local Hessian in general allows to identify pathways
associated to lower energy barriers. In the conclusion we also discuss possible physical reasons
for the discrepancy between our findings and the ones cited above.
The structure of the energy landscape. The energy function of the pure p-spin spherical

model reads:

E (s) =
√

p!
2Np−1

∑
i1<...<ip

ai1...ipsi1 . . .sip , (1)

where s= (s1, . . . ,sN) ∈ RN satisfies s2 =
∑N

i=1 s
2
i = N. The couplings ai1...ip are i.i.d Gaussian

variables with zero mean and unit variance: we denote with E [·] the average with respect to
them. The energy (1) is a Gaussian function with covariance

E
[
E
(
s0
)
E
(
s1
)]

=
N
2

[
q
(
s0,s1

)]p
, (2)

where q(s0,s1) = N−1
(
s0 · s1

)
is the overlap between the configurations, which measures how

close they are in configuration space. We denote the energy density of a configuration by
ϵ(s) = limN→∞N−1 E(s). There are two peculiar values of energy density for this model, ϵgs
and ϵth [15, 19–24]. For ϵ < ϵgs no configuration is present for typical realizations of the ran-
domness: ϵgs is the typical energy of the deepest minima, i.e. the ground states. For ϵ > ϵgs
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Figure 1. Left. Sketch of the configuration space (sphere), with a geodesic path (red thick
line) and a perturbed path (blue dashed line) interpolating between two configurations
σa = sa/

√
Nwith a= 0,1. The tangent plane τ [σ0] to which v belongs is also sketched.

Right.Eigenvalue distribution of the Hessian atσ1 as a function of the overlap q between
the σa, for fixed ϵa.

the landscape presents a number of stationary points (minima, saddles, maxima) that scales
exponentially with N. Their stability changes at the threshold ϵth =−

√
2(p− 1)/p: below ϵth

the exponential majority of the stationary points are local minima; the number of saddles with
intensive index k= o(N) [23, 25] (the index counting the number of directions in configuration
space along which the curvature of the landscape is negative) is also exponentially large below
ϵth, even though smaller than that of minima. Above ϵth the stationary points are overwhelm-
ingly saddles with k=O(N). The arrangement of these points in configuration space has also
been investigated [19, 20, 24, 26, 27], by determining the typical number Ns0(ϵ,q|ϵ0) of sta-
tionary points s1 that are at fixed energy density ϵ1 ∈ [ϵgs, ϵth] and overlap s0 · s1 = Nq with a
referenceminimum s0 of the landscape at arbitrary energy density ϵ0 ∈ [ϵgs, ϵth]. For largeN, the
scaling of the typical value ofNs0(ϵ,q|ϵ0) is controlled by the constrained complexity [26, 27]:

Σ(ϵ1,q|ϵ0) = lim
N→∞

E [logNs0 (ϵ1,q|ϵ0)]
N

, (3)

where the average is over both the population of local minima at energy density ϵ0 at fixed
randomness, and over the randomness. From now on, we focus on parameters for which
Σ(ϵ1,q|ϵ0)⩾ 0: negative values of this function indicate the region of parameters where sta-
tionary points are atypical, i.e. they are found with a probability that decays exponentially
fast with N. By monitoring the stability of the stationary points at fixed ϵa (with a= 0,1), one
finds several transitions as a function of q, represented schematically in figure 1. For q smal-
ler than a threshold qun(ϵ1|ϵ0) they are typically local minima with a Hessian spectrum that
shows no correlations with s0. For intermediate qun(ϵ1|ϵ0)⩽ q⩽ qms(ϵ1|ϵ0) they are minima
that are correlated to s0, in the sense that the eigenvector associated to the minimal eigenvalue
of their Hessian (which identifies the direction of minimal curvature of the landscape around
the minimum) is oriented towards s0. For large q, the stationary points are typically saddles
of index k= 1: the landscape has a single direction of negative curvature, which is oriented
towards the reference minimum s0. For q larger than a threshold qM(ϵ1|ϵ0), no stationary point
is present. See appendix B for a concise account of these results. In this energy landscape thus
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there are exponentially many (in N) saddles with energy below ϵth which surround the refer-
ence minimum, from which s0 is reachable by following the direction of negative curvature of
the saddle [28]. These saddles are possible escape states for the system when it is dynamically
trapped in s0, and they are likely to be the first energy barriers that the system crosses in its
dynamics, even though one expects frequent returns to s0 after these barriers crossings [28].
Given two local minima at arbitrary overlap q with each others, however, it is unknown how
high in energy the system has to climb in order to transition between them. In particular, it is
unknown if this energy barrier is always much higher than ϵth, or whether one can find pairs of
distant minima that are connected by a sequence of saddles having all energies below ϵth. To
get a proxy of these barriers, we compute the energy profile along simple paths interpolating
between pairs of stationary points at arbitrary overlap q.
Interpolating paths and energy profiles. We introduce the vectors σ = s/

√
N belonging

to the N-dimensional sphere of unit radius, SN(1), and the scaled energy function h(σ) :=
E(σ

√
N)
√
2/N. We denote with g(σ) and H(σ) the gradient and the Hessian matrix of the

function h(σ) restricted to SN(1). For a fixed realization of the landscape, we consider two
configurations σ0 and σ1 drawn at random from the population of stationary points of h(σ)
such that g(σa) = 0 for a= 0,1. We extract the stationary points in such a way that each σa

has energy density ϵa ∈ [ϵgs, ϵth] for a= 0,1, and their overlapσ0 ·σ1 equals to some q ∈ [0,1].
We are interested in the energy density profile along paths lying on the surface of SN(1), which
interpolate between the two stationary points. We parametrize the paths as follows:

σ [γ; f ] = γσ1 +β [γ; f ] σ0 + f(γ)v, γ ∈ [0,1] , (4)

where f is a continuous function such that f(0) = f(1) = 0, and v is a norm-1 vector orthogonal
to both σ0 and σ1. The condition that σ[γ; f] lies on SN(1) enforces

β [γ; f ] =−γq+
√
1− γ2 (1− q2)− [f(γ)]2. (5)

Notice that this quantity has to be real, and this imposes some constraints on f(γ). When f ≡
0, equation (4) gives the geodesic path connecting the two stationary points. The function
f acts as a perturbation of the geodesic, along the direction identified by the vector v, see
figure 1. Therefore, we are restricting to interpolating paths belonging to the low-dimensional
subspace spanned by the vectors v and σa, intersected with the surface of the sphere. We aim
at computing the typical energy profile

ϵv [γ; f ] := lim
N→∞

E
[
h(σ [γ; f ])√

2N

]
, (6)

where the average is over the distribution of stationary points σ0,σ1 with energy densities
ϵ0, ϵ1 and overlap q, and over the realizations of the landscape. The average over σ0 and σ1

requires some care, since it can be performed within two different protocols (referred to as
quenched and annealed in the terminology of glasses [29]); in appendix D we discuss both
averaging schemes, arguing that for the problem at hand they give identical results.

To specify our choice of v in (4), it is convenient to introduce the vectors

eN−1
(
σ0
)
=
q σ0 −σ1√

1− q2
, eN−1

(
σ1
)
=
q σ1 −σ0√

1− q2
. (7)
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Each eN−1(σ
a) belongs to the tangent plane τ [σa] to SN(1) at the point σa (meaning that

eN−1(σ
a)⊥ σa), and identifies the direction in the tangent plane pointing towards the other

configuration σb̸=a. Let also xi with i = 1, . . . ,N− 2 be an arbitrary basis of the subspace
orthogonal to the σa. Finally, we denote with λamin the minimal eigenvalue ofH(σa) and with
emin(σ

a) the associated eigenvector, and let:

ua = (emin (σ
a) · eN−1 (σ

a))
2
. (8)

We consider two possible choices for v. The first corresponds to

v→ vasoft =
emin (σ

a)−
√
ua eN−1 (σ

a)√
1− ua

, (9)

meaning that the path is deformed in the directions of softest curvature of the energy landscape
at σa. The second one corresponds to

v→ vHess = Z
N−2∑
i=1

[
xi · H̃

(
σ0
)
· eN−1

(
σ0
)]

xi (10)

where H̃(σa) =H(σa)+ p
√
2Nϵa denote the Hessian matrices at the stationary points shifted

by a constant, and Z a normalization constant. Consider now v→ vHess. This choice is motiv-
ated by the study of the gradient vector g at each configuration σ(γ) along the geodesic path.
As we show in appendix I, at each point the gradient has a tangent component g∥ to the path,
and an orthogonal component g⊥ that is proportional to (10). While g∥ obviously vanishes
at the value of γ that corresponds to the local maximum of the geodesic energy profile, g⊥

does not, meaning that the maximum of the geodesic profile is not a stationary point of h(σ).
This suggests that interpolating paths associated to lower barriers can be found by deforming
the geodesic path in the direction of g⊥, since this is likely the direction that the path would
follow if it was allowed to relax in configuration space by gradient descent [2, 30]. In fact, [6]
developed an iterative algorithm to find low energy paths for deep neural networks based on
this idea.
The case p= 3 and the underlying random matrix problem. From now on we focus spe-

cifically on p= 3. This restriction is motivated by the fact that in this case the energy pro-
file (6) can be expressed as a function of the local properties of the landscape at σa only,
i.e. of the local gradients g(σa) and Hessian matricesH(σa). By implementing the constraints
h(σa) =

√
2Nϵa, g(σa) = 0 and by using the fact that typically h(v) = 0, one obtains:

ϵv [γ; f ] =
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3β2γ q

)
ϵ0 −

√
1− q2γβf E

[
v ·

H̃
(
σ0
)

√
2N

· eN−1
(
σ0
)]

+
f 2

2
E

[
γ v ·

H̃
(
σ1
)

√
2N

· v+β v ·
H̃
(
σ0
)

√
2N

· v

]
, (11)

where we omitted the dependence of f on γ and of β on γ and f. It follows that for p= 3 and
with our choices of v, the energy profile depends only on correlations between the entries of the
Hessian matrices, whose statistics has to be conditioned to the properties of σa. This statistics
is described in detail in appendix E. With the choice (9), in particular, the profile depends on
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the matrix elements of the Hessian H̃(σ1) on the minimal eigenvector of the Hessian H(σ0)
(equivalently, H̃(σ0)), or vice-versa. For any q> 0, the two matrices are correlated (due to the
fact that the landscape at the two points is correlated as (2)) and thus the matrix element is non-
trivial. As we argue in appendix G, to determine its typical behavior for large N one needs to
compute the typical value of the overlap between arbitrary eigenvectors of the two correlated
matrices. This random matrix problem is discussed in recent literature for standard random
matrix ensembles [31, 32]; for the particular type of random matrix ensembles describing the
statistics of the Hessians H(σa), this overlap function has been computed explicitly in [33],
and the results are recalled in appendix G. Below, we discuss the properties of the energy
profiles that are obtained making use of these results.
Results. For v→ v0soft, the interpolating path is as in figure 1. When ϵ0 < ϵth, the reference

stationary point σ0 is typically a local minimum: the shifted Hessian N− 1
2 H̃(σ0) has the stat-

istics of matrices extracted from a Gaussian Orthogonal Ensemble (GOE) with variance 6/N.
The eigenvalues distribution of the shifted Hessian follows a semicircular law, and the min-
imal eigenvalue equals to−2

√
6. The associated eigenvector will show no condensation in the

direction of eN−1(σ
0), meaning that typically u0 takes the value u0typ = 0. The path along (4)

then reads (see appendix H for a derivation)

ϵv0soft [γ; f ] =
(
γ3 + 3γ2β [γ; f ] q

)
ϵ1 +

(
β3 [γ; f ] + 3β2 [γ; f ]γ q

)
ϵ0 −

√
3 f 2 (γ)(β [γ; f ] + γ q) .

(12)

One finds that δϵv0soft/δf = 0 is satisfied by f ≡ 0, and that for ϵa < ϵth it holds δ2ϵv0soft/δf
2 >

0 at f ≡ 0, meaning that the geodesic path is a minimum of the functional (12). Arbitrary
deformations of the interpolating path in the direction of softest curvature at σ0 go through
regions of the landscape of higher energy density, on average. This observation is confirmed
by figure 2 bottom, which shows two density plots of equation (12) as a function of γ and f,
where f is allowed to take any value within its range of validity that keeps β in (5) well defined.
Arbitrary paths are obtained drawing curves connecting the points f(0) = 0 and f(1) = 0 in
a continuous and injective fashion. One finds that the energy profile along these curves is
non-monotonic, with a local maximum whose energy we refer to as the energy barrier. In
figure 2 the parameters ϵ0 and ϵ1 are fixed, while q is tuned in such a way that σ1 is either a
minimum with an Hessian with a single isolated eigenvalue (left) or an index-1 saddle (right).
The white dotted lines represent the level curves of value ϵth. The plot confirms that the lowest
energy barrier is obtained for the geodesic path f≡ 0, and shows that such barrier is well
above ϵth. The same results are obtained for different values of ϵa and q. One finds that the
barrier associated to the geodesic path increases when the overlap q decreases and when ϵ1
increases towards ϵth. We remark that the profile (12) is not the same that one would obtain
choosing v in (11) as a purely random Gaussian vector vrand, uncorrelated to the local Hessian:
with that choice, all the terms depending on v in equation (11) vanish on average, and one
obtains ϵvrand [γ; f] =

(
γ3 + 3γ2β q

)
ϵ1 +(β3 + 3β2γ q)ϵ0. For fixed f(γ) this energy profile is

systematically higher than (12). However, the functional is again minimized by f ≡ 0.
The case v→ v1soft is richer. In this case, depending on the values of ϵa and q, the stationary

point σ1 is either a rank-1 saddle (qms < q⩽ qM), a minimum with one isolated mode in the
Hessian (qun < q⩽ qms), or an uncorrelated minimum (q< qun), see figure 1. Whenever the
Hessian at σ1 has an isolated eigenvalue (q> qun), it is the smallest eigenvalue and its typical
value and the typical value u1typ are given by
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λ1
typ =

3δϵq√
2q

1+ 3q2

1− q2
−

√
1− 2(1− q2)2

3(1+ q2)δϵ2q

 ,

u1typ =
1+ q2

1+ 3q2 −
√
2(q−q3)λ1

typ

3δϵq

[
1−

(
1− q2

)
g
(
λ1
typ

)
12
√
2(q+ q3)δϵq

] (13)

where δϵq = ϵ0 − qϵ1 and g(λ) = 1+ 3q2λ− sign(λ)(1− q2)
√
λ2 − 24, see appendix E. In

this case the energy profile reads:

ϵv1soft [γ; f ] =
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3γβ2 q

)
ϵ0

+ γ β f

√
u1typ (1− q2)

2
(
1− u1typ

) (6
√
2q (ϵ0 − qϵ1)
1− q2

−λ1
typ

)

+
f 2 (γ+ 2β) u1typ
2
√
2
(
1− u1typ

) (6
√
2q (ϵ0 − qϵ1)
1− q2

−λ1
typ

)

+
f 2β u1typ

2
√
2
(
1− u1typ

) 6√2q(qϵ0 − ϵ1)

1− q2
+

f 2 γ

2
√
2
λ1
typ

+
f 2β

2
√
2
(
1− u1typ

) ˆ 2
√
6

−2
√
6
dλ

√
36−λ2

18π
Φ
(
λ1
typ,λ

)
λ.

(14)

The functionΦ in the last term of this expression gives the typical value of the overlap between
the eigenvector associated to λ1

min and any arbitrary eigenvector of H̃(σ0) with eigenvalue λ.
Its expression is rather involved, and we report it in appendix G (see equation (G13)).

In figure 2 (top) we show two density plots associated to (14): clearly in this case the
geodesic path is no longer optimal, and thus the energy barrier is lowered by deforming the
path in the direction of softest curvature at σ1. The optimal path is obtained numerically, by
selecting the lowest energy point for each γ and by verifying that this leads to a continuous
path. In figure 3 we compare the energy profile (14) evaluated along the geodesic and optimal
paths, for σ1 being a correlated minimum (qun < q⩽ qms) or a saddle (qms < q< qM). In the
latter case, the optimal path lies entirely below ϵth (dashed horizontal line). When σ1 is an
uncorrelated minimum, since u1typ = 0 the behavior is analogous as in equation (12) with γ
and β exchanged in the last term of the expression; the optimal path is again the geodesic one.

Similarly as above, plugging vHess into (11) and computing the averages one finds (see
appendix I):

ϵvHess [γ; f ] =
(
γ3 + 3γ2β [γ; f ] q

)
ϵ1 +

(
β3 [γ; f ] + 3β2 [γ; f ]γ q

)
ϵ0 − γβ [γ; f ] f(γ)

√
3
(
1− q2

)2
1+ q2

.

(15)

In this case the barrier along the perturbed path is lower than the geodesic one even for q< qun,
even though it is still above the threshold for all choices of ϵa < ϵth. In figure 4 we plot a
comparison between the energy barrier of the geodesic path and that of the optimal paths, for
given ϵa and varying q. The barriers decrease with q; when v= vHess the deformed path is
always associated to a lower energy barrier, while for v= v1soft this is true only for q> qun. For

7
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Figure 2. Color plot of ϵvsoft [γ; f] as a function of γ and f for ϵ0 =−1.167, ϵ1 =−1.157
and q= 0.66 ∈ [qun,qms] (left) and q= 0.7> qms (right). The plots correspond to
vsoft → v1soft (top), and vsoft → v0soft (bottom).

Figure 3. Comparison between the energy profile along the geodesic (geod.) and
optimal (opt.) paths, for the same parameters as in figure 2(top) which correspond to
σ1 being a minimum (min.) and index-1 saddle (sad.).
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Figure 4. Energy barrier along the geodesic and optimal (perturbed) paths as a function
of q, for ϵ0 =−1.167, ϵ1 =−1.157 and v being equal to either v1soft or vHess.

large values of q the barrier along the perturbed paths lies below ϵth, but this is true only within
the range qms < q< qM, when the arrival point is a rank-1 saddle. We find that this remains
true for arbitrary values of ϵa < ϵth. For the largest q≲ qM, the curve associated to v1soft is flat,
indicating that the energy profile becomes monotonically increasing in the interval γ ∈ [0,1]
with a maximum at γ= 1, equal to ϵ1.

In view of this comparison, one also understands why the geodesic path is no longer optimal
when v→ v1soft and u

1
typ ̸= 0: in this case, indeed, v1soft has an O(1) projection on the vector

vHess, see appendix I, and thus allowing the path to deviate in the direction of v1soft leads to a
lower energy barrier.
Discussion. The motivation for our work is characterizing paths connecting minima in

rough energy landscapes. By focusing on a prototypical mean-field glass model, we have
found that the energy profile along the geodesic path connecting two local minima always
reaches values of energies that are above the threshold one; moreover, interpolating paths that
are allowed to deviate from the geodesic along the direction associated to the softest curvature
of the landscape at σ0 are on average associated to higher energy barriers. Therefore, for the
3-spin model the direction of softest local curvature at the departing minimum σ0 is not a
predictor of lower energy barriers, and it is likely to be uncorrelated to good transition paths.
This is different from what observed in numerical simulations of finite dimensional jammed
and mildly super-cooled particles [17, 18, 34]. A possible explanation is that those cases were
focusing on portions of the energy landscapes in which indeed the Hessian plays a crucial role
[35–38]: in the former case the energy configurations were drawn close to the jamming trans-
ition, whereas in the latter close to the mode-coupling cross-over. We focus instead in a regime
which would correspond to a deep super-cooled state. Our results therefore suggest that in this
case the Hessian plays a different role—a result that would be interesting to test by studying
energy paths and barriers in small systems [39, 40].
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On the other hand, the Hessian matrix at σ0 can still be used to construct directions in
configuration space along which to deform the geodesic path, in order to lower the energy
barrier: this special direction is obtained acting with the Hessian matrix on the vector that
is tangent to the geodesic path at its initial point, and projecting the resulting vector in the
subspace orthogonal to the tangent.

When the stationary points are closer and more strongly correlated, the direction of softest
curvature at σ1 corresponds to an isolated mode of the Hessian; this case of nearby, correlated
minima is likely to be the one more closely related to the results found in finite dimensional
systems [38]: in fact, we find that in this setting deformation of the geodesic path along the
direction of the isolated mode does lead to lower energy barriers. The eigenvector associated
to the isolated mode is localized in the direction connecting the two local minima (even though
one can not talk about quasi-localized modes in this framework of fully-connected systems).
The barriers of the perturbed paths lie in some cases below the threshold energy: we find that
this happens only when σ1 is a rank-1 saddle. For smaller q, paths lying below the threshold
connecting the two minima might exist, but the curvature at σa is not enough to identify them.

Our results shed some light on the challenging problem of activated glassy dynamics [41],
and in particular the identification of the barriers crossed by typical dynamical paths. The
energy barriers found along the interpolating paths are in fact a possible proxy for such bar-
riers, and they give some indications on how the dynamical transition rates between minima
depend on the parameters q, ϵa. At very low temperature, one expects that the first energy barri-
ers crossed by the system in its dynamics starting from a metastable state σ0 correspond to the
rank-1 saddles in the landscape that are closer to σ0 [23–27]. These saddles connect the refer-
ence minimum to other local minima that are quite close to the original one3, are correlated to
it (i.e. which belong to the region q ∈ [qun,qms]) and lie at much higher energy [28]. The ana-
lysis of the interpolating paths complements these findings, as it provides some information
on the energy barriers between distant minima at smaller energy difference, that are likely to
be connected to the first one by a non-trivial sequence of saddles, i.e. of activated jumps. It is
clear that further information can be obtained by identifying the distribution of rank-1 saddles
that connect two given local minima σa by means of a direct counting (i.e. by performing a
doubly constrained complexity calculation); we defer this analysis to future work. It could also
be interesting to extend this study to mixed models obtained summing terms of the form (1)
with different values of p (such as p= 3 and p= 4), in particular looking at paths interpolating
between the different families of marginally stable minima that are exhibited by those models
[42, 43]: this is also left to future work.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

3 For any of the rank-1 saddles that lie at q> qms, one can determine the properties of the local minima that are
connected to the reference one σ0 by this saddle [28]. These local minima typically are at overlap q ∈ [qun,qms] with
σ0. We see that the interpolating path between these minima and the reference one have a local maximum that is at
values of energies that do not correspond to that of the saddles, but are higher. Therefore, to reach the rank-1 saddle
connecting the pair of minima one has to modify the interpolating path by including other directions in configuration
space.
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Appendix A. Tangent planes, Riemannian gradients and Hessians

In this appendix, we introduce the main formalism and notation used in the rest of the paper.
Consider the energy field h(σ), defined on the N-dimensional hypersphere of unit radius, σ ∈
SN(1). We introduce a symmetric random tensor with components ai1···ip (which are mean zero
and unit variance random variables) so that

h(σ) =
√
p!

∑
i1<···<ip

ai1···ipσi1 · · ·σip =
1√
p!

∑
i1,...,ip

ai1···ipσi1 · · ·σip =

√
2
N
E
(√

Nσ
)
. (A1)

We define with∇h(σ) the N-dimensional gradient of the field h(σ) extended to the space RN.
Such vector has components:

(∇h(σ))i = xi ·∇h(σ) =
∂h(σ)
∂σi

, (A2)

where xi with i = 1, . . . ,N denotes some orthonormal basis of RN with components [xi]j = δij.
Similarly, we define with ∇2h(σ) the N×N-dimensional Hessian matrix with components:

(
∇2h(σ)

)
ij
= xi ·∇2h(σ) · xj =

∂2h(σ)
∂σi ∂σj

. (A3)

Notice that, due to the homogeneity of the field h(σ), one can show that:

∇h(σ) ·σ = ph(σ) , (A4)

and similarly

∇2h(σ) ·σ = (p− 1)∇h(σ) . (A5)

The Riemannian gradient g(σ) and Hessian H(σ) of h(σ) take into account the spherical
constraint imposed on σ. We denote with τ [σ] the (N− 1)-dimensional tangent plane for each
point σ of the hypersphere, which is the plane in RN spanned by vectors that are orthogonal
to the vector σ (see figure 1). Let ei<N(σ) be an orthonormal basis of such tangent plane,

τ [σ] = Span{ei (σ)}N−1
i=1 .

This local basis of τ [σ] can be extended to a basis of RN by adding eN(σ) := σ. The (N− 1)-
dimensional Riemannian gradient g(σ) is defined, component-wise, as the projection of the
unconstrained gradient ∇h(σ) on the basis elements of the tangent plane τ [σ]:

gα (σ) =∇h(σ) · eα (σ) for α < N. (A6)

11
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With a slight abuse of notation, in the following we sometimes use the same notation g for the
N-dimensional extended vector with an additional last component gN(σ) = 0. In this way, the
unconstrained and Riemannian gradients are related by:

∇h(σ) = g(σ)+ ph(σ)σ. (A7)

In order to obtain the Riemannian Hessian one can make use of a Lagrange multiplier
to enforce the constraint σ2 = 1: we define hλ(σ) := h(σ)− λ

2 (σ
2 − 1). Then ∇hλ(σ) =

∇h(σ)−λσ
!
= 0⇒ λ= σ ·∇h(σ). From this it follows that

Hαβ (σ) : = eα (σ) ·∇2hλ (σ) · eβ (σ)
= eα (σ) ·∇2h(σ) · eβ (σ)− (∇h(σ) ·σ)δαβ , α,β ⩽ N− 1. (A8)

The identity (A4) implies that the Riemannian Hessian is obtained from the unconstrained one
by shifting by a diagonal matrix proportional to ph(σ), and projecting on the local tangent
plane. Therefore, working with the unconstrained or Riemannian Hessian is essentially the
same, provided that one remembers about the shift.

The tangent plane τ [σ], and therefore the basis vectors eα(σ), depend on the particular point
in configuration space that one is looking at. For two different configurations, σ0 and σ1 at
overlap q= σ0 ·σ1, it is convenient to choose the bases on the tangent planes τ [σa], with a=
0,1, as follows: first, one can always choose the basis xi in theN-dimensional spaceRN in such
a way that the first N− 2 vectors x1, . . . ,xN−2 are orthogonal to both σ0 and σ1. These vectors
belong to both tangent planes (because they are orthogonal to both the configuration vectors),
and therefore one can choose ei(σa) = xi for all i = 1, . . . ,N− 2. Concretely, in the xi basis
one can set σ0 = (0,0, . . . ,0,1) and σ1 = (0,0, . . . ,−

√
1− q2,q). Then, in the tangent plane

τ [σ0] there remains a single basis vector to be chosen, which will have a non-zero projection
with σ1; this vector has already been defined in equation (7),

eN−1
(
σ0
)
=
qσ0 −σ1√

1− q2
.

It has unit norm and it is orthogonal to all the others, since xi ⊥ σa for any i and a= 0,1. The
vector σ0 then completes the local basis. With the choice above, eN−1(σ

0) = (0,0, . . . ,1,0).
Similarly, τ [σ1] is spanned by x1, . . . ,xN−2 plus the vector eN−1(σ

1) defined similarly as

eN−1
(
σ1
)
=
qσ1 −σ0√

1− q2
.

Again, with the choice above eN−1(σ
1) = (0,0, . . . ,−q,−

√
1− q2). In summary, we can

choose eα(σ0) = eα(σ1)with α= 1, . . . ,N− 2 as a basis of the subspace span{xα}, while the
remaining basis vector of the tangent planes eN−1(σ

a) changes depending on which tangent
plane we consider (in appendix E.2, we specify the choice of some of the vectors eα(σ0) =

eα(σ1) as well). We denote the sets of these basis vectors asBa = {eα(σa)}Nα=1. All along this
work, we assume that this choice of basis is made. Moreover, we will often use the notation
eα(σa) = eaα, as well as h(σ

a) = ha, gα(σ
a) = gaα andH(σa) =Ha for simplicity.

12
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Appendix B. The complexity calculation: a recap

For completeness, we provide a summary of the main results of [26], upon which part of
the present work is built. In [26] the authors compute the quenched complexity of stationary
points σ1 of h(σ) at energy density ϵ1 (meaning that g(σ1) = 0 and h(σ1) =

√
2Nϵ1), that are

conditioned to be at fixed overlap σ0 ·σ1 = q with a given reference minimum σ0 at energy
density ϵ0. We refer to σ1 as the secondary configuration. The complexity reads

Σ(ϵ1,q|ϵ0) = lim
N→∞

1
N
E [logNσ0 (ϵ1,q|ϵ0)] ,

see equation (3). The expectation value indicates both an average over the disorder, as well
as a flat average over all local minima of energy ϵ0; the random variable Nσ0(ϵ1,q|ϵ0) is the
number of such stationary points σ1, and it is defined below in equation (B4). To compute
the expected value of the logarithm by means of the replica trick, one needs to replicate the
secondary configuration σ1:

Σ(ϵ1,q|ϵ0) = lim
N→∞

lim
n→0

Mn (ϵ1,q|ϵ0)− 1
Nn

(B1)

with

Mn (ϵ1,q|ϵ0) := E

[
1

N (ϵ0)

ˆ
SN(1)

dσ0ω
(
σ0
)ˆ

SN(1)

n∏
a=1

dσaωϵ1,q
(
σa|σ0

)]
(B2)

and

ωϵ0

(
σ0
)
= |detH

(
σ0
)
| δ
(
h
(
σ0
)
−
√
2Nϵ0

)
δ
(
g
(
σ0
))

ωϵ1,q
(
σa|σ0

)
= |detH (σa) | δ

(
h(σa)−

√
2Nϵ1

)
δ (g(σa)) δ

(
σ0 ·σa− q

) (B3)

and where

N (ϵ0) =

ˆ
SN(1)

dσ0ωϵ0

(
σ0
)
,

Nσ0 (ϵ1,q|ϵ0) =
ˆ
SN(1)

dσ1ωϵ1,q
(
σ1|σ0

) (B4)

represent, respectively, the number of stationary points at energy density ϵ0 and the number
of stationary points at energy density ϵ1 and overlap q with σ0. In order to carry out such
computation, in principle one has to replicate the reference configuration σ0 as well by raising
the denominator to the numerator, thus writing:

Mn (ϵ1,q|ϵ0) := lim
k→0

E

ˆ
SN(1)

k∏
β=1

dσ0,β ω
(
σ0,β

)ˆ
SN(1)

n∏
a=1

dσaωϵ1,q
(
σa|σ0

)
,

 (B5)

where σ0,β=1 = σ0. Due to the isotropy of the correlation function of the random field h(σ),
it turns out that this expectation value depends on the configurations σa,σ0,β only through the
overlaps q0αβ = σ0,α ·σ0,β , qaβ = σa ·σ0,β and q1ab = σa ·σb, where by construction q0αα =

q1aa = 1 and qa1 = σa ·σ0,β=1 = q. This implies that the integral over the configurations can

13
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be replaced by an integral over these order parameters, which can be computed with the saddle
point method. One sees that the saddle point equations for the parameters q0αβ enforce q0αβ = 0
for all α ̸= β = 1, . . . ,k; this reflects the fact that the overlap between metastable states in the
pure spherical p-spin model is vanishing [15], i.e. the states are typically orthogonal to each
others. This also implies that qaβ = 0 for all a= 1, · · ·n and β ̸= 1. As a consequence, at the
saddle point solution the secondary replicas σ1 are coupled only to the original reference
configuration σ0 and not to its replicas. It is simple to check that this implies that to leading
order in N, the expectation value (B2) is identical to its annealed version, which is obtained
averaging separately the numerator and the denominator. This means that we can write

Mn (ϵ1,q|ϵ0) : =
1

E [N (ϵ0)]
E

[ˆ
SN(1)

dσ0ω
(
σ0

)ˆ
SN(1)

n∏
a=1

dσaωϵ1,q

(
σa|σ0

)]

= E

[ˆ
SN(1)

n∏
a=1

dσaωϵ1,q

(
σa|σ0

)∣∣∣∣ h
(
σ0)=√

2Nϵ0
g
(
σ0)= 0

]

=

ˆ
SN(1)

n∏
a=1

dσaE

[
n∏

a=1

ωϵ1,q

(
σa|σ0

)∣∣∣∣ h
(
σ0)=√

2Nϵ0
g
(
σ0)= 0

]

=

ˆ
SN(1)

n∏
a=1

dσaE

[
n∏

a=1

|detH (σa) |
∣∣∣ { ha =

√
2Nϵ1,h0 =

√
2Nϵ0

ga = 0, g0 = 0 ∀a= 1, . . .,n

}]
pσ⃗|σ0 (0, ϵ1)

(B6)

where σ⃗ = (σ1, . . . ,σn) and

pσ⃗|σ0 (0, ϵ1) = E

[
n∏

a=1

δ
(
ha−

√
2Nϵ1

)
δ (ga)

∣∣∣ h0 =
√
2Nϵ0

g0 = 0

]
. (B7)

The expectation value is now a function of the overlaps q1ab, and its leading order term can be
determined again with a saddle point calculation. Searching for a saddle point solution where
all replicas have the same overlap, q1ab = q1 for all a,b= 1, · · ·n and a ̸= b, one finds the solu-
tion q1 = q2 [26], which is the smallest possible overlap between replicas that are all subject to
the constraint of having overlap qwith the reference configuration. It can be showed explicitly
that this implies that the complexity Σ(ϵ1,q|ϵ0) computed within the quenched formalism is
the same as that obtained within the annealed framework, i.e. setting n= 1 in the formulas
above. More precisely, one obtained the identity:

Σ(ϵ1,q|ϵ0) = lim
N→∞

1
N
E [logNσ0 (ϵ1,q|ϵ0)] = lim

N→∞

1
N
logE [Nσ0 (ϵ1,q|ϵ0)] .

The final formula giving the complexity reads [26]:

Σ(ϵ1,q|ϵ0) =
1
2
log
(p
2
(z̃− ϵ1)

2
)
+
p
(
ϵ21 + ϵ1z̃

)
2(p− 1)

+
Q
2
, z̃=

√
ϵ21 − ϵ2th (B8)

where ϵth =−
√
2(p− 1)/p and

Q= log

(
1− q2

1− q2p−2

)
− 2
(
ϵ20U0 (q)+ ϵ0ϵ1U(q)+ ϵ21U1 (q)

)
(B9)
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Figure 5. The plot shows in color the region in the plane (q, ϵ1) where the complexity
is positive, for ϵ0 =−1.167. The blue leftmost area corresponds to minima, the dashed
blue zone to minima with an isolated eigenvalue in the Hessian spectrum, the rightmost
(dashed) yellow zone to index-1 saddles. The stars mark the transitions in the properties
of the Hessians of the stationary points, for fixed ϵ1. In the white area the complexity is
vanishing.

with

U0 (q) =
q2p
[
−q2p+ pq2

(
1− q2

)
+ q4

]
q4p− q2p

[
(p− 1)2 (1+ q4)− 2p(p− 2)q2

]
+ q4

,

U(q) =
2q3p

[
1− p

(
1− q2

)]
− 2qp+4

q4p−
(
(p− 1)2 (1+ q4)− 2(p− 2)pq2

)
q2p+ q4

,

U1 (q) =
q4 − q2p− pq2p

[
(p− 1)q4 +(3− 2p)q2 + p− 2

]
q4p− q2p

[
(p− 1)2 (1+ q4)− 2p(p− 2)q2

]
+ q4

.

(B10)

The results of this calculation are summarized in figure 5 for a representative value of
ϵ0 =−1.167 [28]. For fixed ϵ0 < ϵth, one finds that Σ(ϵ1,q|ϵ0) is positive only for q smal-
ler than a threshold value qM, which depends on ϵ0. For fixed q< qM, the complexity is pos-
itive for ϵ1 belonging to a finite range, that is shown as a colored area (blue and yellow) in
figure 5. By looking at the statistics of the Hessian of the stationary points at given q, ϵ1, one
can discriminate whether they are stable local minima (such that all the eigenvalues of the
Hessian are typically positive) or saddles with index k, i.e. with an Hessian with k negative
eigenvalues. As we recall below, the statistic of the Hessian matrices is the same as that of
GOE matrices perturbed with additive and multiplicative low-rank perturbations, and shifted
by the quantity pϵ1. Fixing the energy ϵ1 and decreasing the overlap q (see the dashed arrow
in figure 5), one finds that the typical stationary points are first saddles of index k= 1 (yellow
area), then minima with an isolated but positive mode (blue dashed area), and finally minima
with an Hessian spectrum described simply by a shifted semicircular law, without any isolated
mode (blue area). The transitions between these different populations of stationary points are
marked with stars in the figure. For ϵ > ϵth, all stationary points are saddles of extensive index
k∼O(N).
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In the following, we select pairs of stationary points with parameters ϵa,q which belong to
the colored region, i.e. which are such that the corresponding complexity Σ(ϵ1,q|ϵ0)⩾ 0.

Appendix C. The energy profile along a path, and the case p=3

Consider a path on the hypersphere, parametrized as in equation (4). Let h[γ; f]≡ h(σ[γ; f])
denote the energy profile along the path. It holds:

h [γ; f ] =
1√
p!

∑
i1,...,ip

ai1···ip

p∑
k1=0

k1∑
k2=0

(
p
k1

)(
k1
k2

)
fp−k1βk1−k2γk2vi1 · · ·vip−k1

σ0
ip−k1+1

· · ·σ0
ip−k2

σ1
ip−k2+1

· · ·σ0
ip . (C1)

In the special case p= 3, this function depends only on the gradients and the Hessians of the
energy field at the initial and final configurations σa, a= 0,1. Indeed, for p= 3 the above
expansion reduces to:

h [γ; f ]
p=3
= γ3h

(
σ1
)
+β3h

(
σ0
)
+ f 3h(v)+ γ2β ∇h

(
σ1
)
·σ0 +β2γ ∇h

(
σ0
)
·σ1

+ γ2f ∇h
(
σ1
)
· v+β2f ∇h

(
σ0
)
· v+ γβf v ·∇2h

(
σ0
)
·σ1

+
f 2

2

(
γ v ·∇2h

(
σ1
)
· v+β v ·∇2h

(
σ0
)
· v
)
.

(C2)

We are interested in the case in which the beginning and end points of the path are stationary
points satisfying g(σa) = 0, and σ0 ·σ1 = q. Moreover, we assume that the vector v is chosen
in such a way that v⊥ σ0,σ1. The identity (A7) then implies that

h [γ; f ] =
(
γ3 + 3γ2β q

)
h
(
σ1
)
+
(
β3 + 3β2γ q

)
h
(
σ0
)
+ f 3h(v)+ γβf v ·∇2h

(
σ0
)
·σ1

+
f 2

2

(
γ v ·∇2h

(
σ1
)
· v+β v ·∇2h

(
σ0
)
· v
)
.

(C3)

From this equation, equation (11) follows by using the block structure of the conditional
Hessian matrices described below, as well as the fact that h(v) = 0 typically. We remark that
this expression is at fixed random couplings. In the rest of the paper, we restrict to the case
p= 3 and average the energy profile over all configurations σ0 and σ1 satisfying

g
(
σ0
)
= 0 & g

(
σ1
)
= 0

h
(
σ0
)
=
√
2Nϵ0 & h

(
σ1
)
=
√
2Nϵ1

σ0 ·σ1 = q,

(C4)

as well as over the distribution of the random couplings ai1...ip .

Appendix D. Averages: quenched vs annealed energy profiles

It follows from equation (C3) that the energy profile along a path is completely determined
by the local properties at the two configurations σa for a= 0,1, if v is also chosen to be a
local property that depends only in the statistics of the landscape at σ0 or σ1. In the following,
we assume that v is correlated with the softest mode of the Hessian matrix at either σ0 or
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σ1. We now consider the average of this function, over the family of stationary points σa of
energy density ϵa and overlap q, and over all possible realizations of the random landscape. We
consider two different averaging prescriptions, which we refer to as quenched and annealed
in analogy with [29].

The quenched energy profile. The quenched averaging protocol corresponds to the follow-
ing procedure: (i) for fixed realization of the random landscape, select σ0 among the exponen-
tially many stationary points of energy density ϵ0; (ii) select σ1 among the stationary points of
energy density ϵ1 that are at overlap qwith the previously selected σ0; (iii) evaluate the energy
profile along the path, under the condition that v has a projection on the minimal Hessian
eigenvector at the start or at the end; (iv) average the profile over the population of station-
ary points σ1 with parameters ϵ1,q, (v) average over all σ0, (vi) average over the realizations
of the landscape. We recall that in order to satisfy the spherical constraint, all integrals over
configurations are taken over SN(1). Formally, this prescription corresponds to:

h(Q) [γ; f ] := E

[
1

N (ϵ0)

ˆ
SN(1)

dσ0ωϵ0

(
σ0
) 1
Nσ0 (ϵ1,q|ϵ0)

ˆ
SN(1)

dσ1ωϵ1,q
(
σ1|σ0

)
h [γ; f ]

]
(D1)

where all the quantities above have already been defined in appendix B. In (D1), the ran-
dom landscape appears both in the numerator and in the denominator; in order to perform the
average, one has to resort to the replica trick to treat both denominators, through the formula
x−1 = limn→0 xn−1. Since there are two denominators, two sets of replicas should be exploited.
However, due to the fact that the typical overlap between stationary pointsσ0 in the pure spher-
ical p-spin is zero [15], the flat average over σ0 can be reproduced by conditioning the average
over the landscape to realizations for which the configuration σ0 is stationary, with a given
energy density ϵ0 (see appendix B). This implies:

h(Q) [γ; f ] = E

[
1

Nσ0 (ϵ1,q|ϵ0)

ˆ
SN(1)

dσ1ωϵ1,q
(
σ1|σ0

)
h [γ; f ]

∣∣∣ h
(
σ0
)
=
√
2Nϵ0

g
(
σ0
)
= 0

]
. (D2)

By means of the replica trick, this average can be re-written as:

h(Q) [γ; f ] = lim
n→0

ˆ
SN(1)

n∏
k=1

dσk E

[
n∏

k=1

ωϵ1,q
(
σk|σ0

)
h [γ; f ]

∣∣∣ h
(
σ0
)
=
√
2Nϵ0

g
(
σ0
)
= 0

]
. (D3)

The delta functions inside ωϵ1,q(σ
1|σ0) can be replaced by a conditioning in the average.

To simplify the notation, for all the n+ 1 configurations σk with k= 0,1, · · · ,n we define
the gradient vectors gk ≡ g(σk), the Hessian matrices Hk ≡H(σk), and the rescaled energy
functional hk ≡ h(σk). This leads to:

h(Q) [γ; f ] = lim
n→0

ˆ
SN(1)

n∏
k=1

dσk δ
(
σk ·σ0 − q

)
×E

[
n∏

k=1

|detH
(
σk
)
|h [γ; f ]

∣∣∣ { hk =
√
2Nϵ1,h0 =

√
2Nϵ0

gk = 0, g0 = 0 ∀k= 1, . . .,n

}]
pσ⃗|σ0 (0, ϵ1) ,

(D4)
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where σ⃗ = (σ1, . . . ,σn) and pσ⃗|σ0(0, ϵ1), the joint density function of the gradients g⃗k and
fields h⃗k, induced by the distribution of the couplings and conditioned to g0 = 0 and h0 =√
2Nϵ0, have already been defined in equation (B7)
We define:

Econd
n [ · ]≡ E

[
·
∣∣∣ { hk =

√
2Nϵ1,h0 =

√
2Nϵ0

gk = 0, g0 = 0 ∀k= 1, . . .,n

}]
. (D5)

Plugging (C3) into (D4) and implementing the conditioning, we find:

h(Q) [γ; f ] =
(
γ3 + 3γ2β q

)√
2Nϵ1 +

(
β3 + 3β2γ q

)√
2Nϵ0

+ f 3 (γ) lim
n→0

ˆ
SN(1)

n∏
k=1

dσk δ
(
σk ·σ0 − q

)
×Econd

n

[
n∏

k=1

|detH
(
σk
)
|h(v)

]
pσ⃗|σ0 (0, ϵ1)

+ γ β [γ; f ] f(γ) lim
n→0

ˆ
SN(1)

n∏
k=1

dσk δ
(
σk ·σ0 − q

)
×Econd

n

[
n∏

k=1

|detH
(
σk
)
|v ·∇2h

(
σ0
)
·σ1

]
pσ⃗|σ0 (0, ϵ1)

+
f 2 (γ)
2

lim
n→0

ˆ
SN(1)

n∏
k=1

dσk δ
(
σk ·σ0 − q

)
×Econd

n

[
n∏

k=1

|detH
(
σk
)
|
(
γ v ·∇2h

(
σ1
)
· v+β v ·∇2h

(
σ0
)
· v
)]

pσ⃗|σ0 (0, ϵ1) ,

(D6)

where the Riemannian and unconstrained Hessian matrices are related by (A8). The above
equation contains the conditional average of the product of n determinants, multiplied by those
terms in the energy profile h that depend on the matrices H(σ1) and H(σ0). All the matrices
H(σα) with α= 0,1, · · · ,n are coupled, and each one has to be conditioned to the gradi-
ents and energies of the n+ 1 configurations. The correct way to proceed is to determine the
expectation value for fixed n, and subsequently take n→ 0. In the language of the Franz-Parisi
potential [29], this is a quenched calculation, since the two configurations σ0 and σ1 are not
on the same footing: σ0 can be considered as a reference configuration that is selected first,
and σ1 as a secondary one.

The annealed energy profile. In the annealed case, the two configurations σ0 and σ1 are
treated on the same footing; the averaging protocol corresponds to the following procedure:
(i) for fixed realization of the random landscape, select σ0 and σ1 among the exponentially
many stationary points of energy density ϵ0 and ϵ1, at mutual overlap q; (ii) proceed as in the
quenched case. Formally, this is equivalent to taking equation (D2) and factorizing the average
of the numerator and denominator, getting:
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h(A) [γ; f ] =
1

E [Nσ0 (ϵ1,q|ϵ0)]

ˆ
SN(1)

dσ1 δ
(
σ1 ·σ0 − q

)
×E

[
|detH

(
σ1
)
|h [γ, f ]

∣∣∣ { h1 =
√
2Nϵ1,h0 =

√
2Nϵ0

gα = 0 ∀α= 0,1

}]
pσ1|σ0 (0, ϵ1) ,

(D7)

where now

pσ1|σ0 (0, ϵ1) = E
[
δ
(
h1 −

√
2Nϵ1

)
δ
(
g1
) ∣∣∣ h0 =

√
2Nϵ0

g0 = 0

]
. (D8)

One sees that the numerator is the same as (D4) with n= 1. Plugging (C3) into this expression
and implementing the conditioning, we find in this case:

h(A) [γ; f ] =
(
γ3 + 3γ2β q

)√
2Nϵ1 +

(
β3 + 3β2γ q

)√
2Nϵ0

+
f 3 (γ)

E [Nσ0 (ϵ1,q|ϵ0)]

ˆ
SN(1)

dσ1 δ
(
σ1 ·σ0 − q

)
×Econd

1

[
|detH

(
σ1
)
|h(v)

]
pσ1|σ0 (0, ϵ1)

+
γ β [γ; f ] f(γ)

E [Nσ0 (ϵ1,q|ϵ0)]

ˆ
SN(1)

dσ1 δ
(
σ1 ·σ0 − q

)
×Econd

1

[
|detH

(
σ1
)
|v ·∇2h

(
σ0
)
·σ1

]
pσ1|σ0 (0, ϵ1)

+
f 2 (γ)

2E [Nσ0 (ϵ1,q|ϵ0)]

ˆ
SN(1)

dσ1 δ
(
σ1 ·σ0 − q

)
×Econd

1

[
|detH

(
σ1
)
|
(
γ v ·∇2h

(
σ1
)
· v+β v ·∇2h

(
σ0
)
· v
)]
pσ⃗|σ0(0, ϵ1).

(D9)

In this case, one has to deal with a pair of matrices, conditioned to only two gradients and
energies. In the language of the Franz-Parisi potential, this is an annealed calculation.

Appendix E. Statistics of the Hessian matrices

In this appendix, we discuss the statistical distribution of the unconstrained Hessian matrices
1√
N−1

∇2h(σa) with a= 0,1, subject to the conditioning on the energies and gradients of
the various replicas. As we have seen in appendix A, the unconstrained Hessian and the
Riemannian Hessian are easily related by a projection and shift.

E.1. Statistics of the Hessians: the annealed setup

E.1.1. Matrix distribution after conditioning. In this case, one has to determine the joint distri-
butions of the two Hessian matrices∇2h(σa), each one conditioned to g(σa) = 0 and h(σa) =√
2Nϵa for a= 0,1. This conditional, joint distribution has been determined in [24, 26]: each
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matrix ∇2h(σa), expressed in its own tangent plane basis Ba introduced in appendix A, has
the following block structure:

1√
N− 1

∇2h
(
σa)=



ma
1N−1 0

Ba
... 0

ma
N−2N−1 0

ma
1N−1 · · · ma

N−2N−1 ma
N−1N−1 +µa 0

0 0 0 0
√

2N
N−1 p(p− 1)ϵa


∈RN×N.

(E1)

The entries in the (N− 2)× (N− 2) blocks Ba are independent of the entries ma
iN−1, and cor-

related with each others as follows:

E
[
BaijB

b
kl

]
=

(
δab

σ2

N− 1
+(1− δab)

σ2
H

N− 1

)
(δikδjl+ δilδjk) ,

E
[
ma
iMm

b
jM

]
=

(
δab

∆2

N− 1
+(1− δab)

∆2
h

N− 1

)
δik i, j < N− 1,

E
[
ma
N−1N−1m

b
N−1N−1

]
=

vab
N− 1

, a,b ∈ {0,1} .

(E2)

Therefore, the blocks Ba are (N− 2)× (N− 2) matrices with GOE (Gaussian Orthogonal
Ensemble) statistics, with rescaled variance σ2(N− 2)/(N− 1). The two blocks are coupled
component-wise. The parameters σ,σH,∆,∆h and µa are functions of p and of the parameters
ϵa,q, and read [26]:

σ2 = p(p− 1)

σ2
H = p(p− 1)qp−2

σ2
W = σ2 −σ2

H = p(p− 1)
(
1− qp−2

)
∆2 = p(p− 1)

[
1−

(p− 1)
(
1− q2

)
q2p−4

1− q2p−2

]

∆2
h = p(p− 1)qp−3 (−1)

[
1−

(p− 1)
(
1− q2

)
1− q2p−2

]
µ1 = µ(ϵ0, ϵ1) , µ0 = µ(ϵ1, ϵ0)

(E3)

where:

µ(x,y)≡
√
2p(p− 1)

(
1− q2

)
×
[
q4 − (p− 1)q2p+(p− 2)q2p+2

]
x−
[
q3p+(p− 2)qp+2 − (p− 1)qp+4

]
y

q6−p+ q3p+2 − qp+2
[
(p− 1)2 (1+ q4)− 2p(p− 2)q2

] .

(E4)
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The conditional distribution of the Riemannian Hessians therefore reads as follows:

H (σa)√
N− 1

=



ma
1N−1

Ba
...

ma
N−2N−1

ma
1N−1 · · · ma

N−2N−1 ma
N−1N−1


+µa e

a
N−1 [e

a
N−1]

T−
√

2N
N− 1

pϵa ∈ RN−1×N−1.

(E5)

For later convenience, we also define the matrix:

H̃A (σ
a)√

N− 1
=



ma
1N−1

Ba ...

ma
N−2N−1

ma
1N−1 · · · ma

N−2N−1 ma
N−1N−1 +µa


∈ RN−1×N−1. (E6)

whereA stands for annealed. Thesematrices can be though of asmatrices with aGOE statistics,
perturbed with both an additive and multiplicative finite rank perturbation along the direction
corresponding to the basis vector eN−1(σ

a), and shifted by a diagonal matrix. Notice that in
the annealed formalism the random matrix problem is symmetric, in the sense that the two
conditioned Hessians have the same structure at both the configurations σ0 and σ1.

Let us now consider specifically the case p= 3. One sees from (E3) that for p= 3 it holds
∆2 =∆2

h = 6(1− q2)(1+ q2)−1, which implies that m0
iN−1 = m1

iN−1 ≡ miN−1. Moreover, in
this case µ1 = 6

√
2q(ϵ0 − qϵ1)(1− q2)−1 and µ0 = 6

√
2q(ϵ1 − qϵ0)(1− q2)−1.

E.1.2. Spectral statistics and isolated eigenvalue. The matrices (E5) have a block structure,
with a (N− 2)× (N− 2) block Ba with GOE statistics, and a special line and column. Let
us neglect the term proportional to the identity, which corresponds to a constant shift of the
whole spectrum, and work with H̃A(σ

a). The spectral properties of these kind of matrices are
discussed in detail in [33]. To leading order in the size of the matrix, the eigenvalue density
ρaN(λ) of both matrices is not affected by the presence of the special line and column, and it
just coincides with the eigenvalue density of the GOE block, i.e. it is given by the semicircular
law

ρaN (λ) = ρσ (λ)+O
(
1
N

)
=

1
2πσ2

√
4σ2 −λ2 +O

(
1
N

)
, σ2 = p(p− 1) . (E7)

The presence of the special row and column can give rise to subleading contributions to
the eigenvalue density: these contributions correspond to eigenvalues that do not belong to
the support of the semicircular law (and are said to be ‘isolated’), and whose typical value
depends on the parameters ∆,µa governing the statistics of the entries of the special row and
column. As argued in [33], the fact that ∆⩽ σ (as can be easily verified to be the case here),
implies that only one isolated eigenvalue can exist for these matrices. Such eigenvalue exists
whenever

|µa|> σ

(
1+

σ2 −∆2

σ2

)
, (E8)
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and it is obtained as the real solution of the equation

λ−µa−∆2gσ (λ) = 0, (E9)

where for z real such that |z|> 2σ one has

gσ (z) =
1

2σ2

(
z− sign(z)

√
z2 − 4σ2

)
. (E10)

The equation (E9) is obtained imposing that the resolvent of the matrix (E6), projected into the
direction eaN−1 of the rank-1 perturbation, has a pole. Explicitly, the eigenvalue is given by:

λaiso =
2µaσ2 −∆2µa− sign(µa)∆2

√
µ2
a− 4(σ2 −∆2)

2(σ2 −∆2)
. (E11)

Notice that for µa < 0, this eigenvalue is negative and it coincides with the smallest one of
the matrix, i.e. λamin = λaiso. Whenever the isolated eigenvalue exists, its eigenvector eaiso has a
projection on the vector eN−1(σ

a), corresponding to the special line and column of the matrix,
which remains ofO(1)whenN is large. The typical value of this projection has been computed
in [27, 33] and reads:(

eaiso · eaN−1

)2
= qσ,∆ (λaiso,µa) (E12)

where we introduced the function:

qσ,∆ (λ,µ) := sign(µ)
sign(λ)∆2

√
λ2 − 4σ2 −λ

(
2σ2 −∆2

)
+ 2µσ2

2∆2
√
µ2 − 4(σ2 −∆2)

. (E13)

It is shown in [33] that equation (E12) is indeed positive on the Right Hand Side, as it should be.
Moreover, whenever the squared overlap is non-zero, the eigenvector is aligned with the direc-
tion of the finite-rank perturbation, meaning that eaiso · eaN−1 > 0. In the main text, we consider
the case in which µa < 0 and thus λamin = λaiso, and define ua = (eaiso · eaN−1)

2. The expression
for these quantities in the case a= 1 and p= 3 are given in equation (13).

E.1.3. Change of basis. We recall that the matrices (E1) are expressed in the bases Ba. It is
sometimes convenient for the calculations to express both matrices in the same basis. This is
achieved by performing a simple rotation, which involves only the two elements of the basis
sets. We use the fact that

σ0 = qσ1 −
√
1− q2eN−1

(
σ1
)

eN−1
(
σ0
)
=−

√
1− q2σ1 − qeN−1

(
σ1
)

σ1 = qσ0 −
√
1− q2eN−1

(
σ0
)

eN−1
(
σ1
)
=−

√
1− q2σ0 − qeN−1

(
σ0
)
.

(E14)

The matrix of change of basis B0 →B1 reads:

R0→1 =



1 0 . . . 0 0 0
. . . 0 0

. . . 0 0
0 . . . 0 1 0 0
0 . . . . . . 0 −q −

√
1− q2

0 . . . . . . 0 −
√

1− q2 q


∈ RN×N, (E15)
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and it is equivalent to R1→0. This implies that in the basis B1 we have:

R−1
0→1

∇2h
(
σ0)

√
N− 1

R0→1

=



−qm0
1N−1 −

√
1− q2m0

1N−1

B0 −qm0
iN−1 −

√
1− q2m0

iN−1

−qm0
N−2N−1 −

√
1− q2m0

N−2N−1

−qm0
1N−1 · · · · · · −qm0

N−2N−1 q2
(
m0
N−1N−1 +µ0

)
+ l0N−1N−1 l0N−1N

−
√

1− q2m0
1N−1 · · · · · · −

√
1− q2m0

N−2N−1 l0N−1N l0NN


,

(E16)

where

l0N−1N−1 =
(
1− q2

)√ 2N
N− 1

p(p− 1)ϵ0,

l0NN =
(
1− q2

)(
m0
N−1N−1 +µ0

)
+ q2

√
2N
N− 1

p(p− 1)ϵ0,

l0N−1N = q
√

1− q2

(
m0
N−1N−1 +µ0 −

√
2N
N− 1

p(p− 1)ϵ0

)
.

(E17)

Defining the (N− 1)× (N− 1) matrix

Πa
q = I− (1− q)eN−1 (σ

a)eTN−1 (σ
a) (E18)

and using (E6), one can write the projection of this matrix onto the basis of τ [σ1] as

R−1
0→1

∇2h
(
σ0
)

√
N− 1

R0→1

∣∣∣∣
⊥
=Π1

q ·
H̃A
(
σ0
)

√
N− 1

· Π1
q+ l0N−1N−1eN−1

(
σ1
)
eTN−1

(
σ1
)

(E19)

Notice that the matrix∇2h(σ1) expressed in the basis B0 has exactly the same form, with the
superscript 0 replaced by 1.

E.2. Statistics of the Hessians: the quenched setup

E.2.1. Matrix distribution after conditioning. In the quenched setting, replicas are introduced
and one has to consider the joint distribution of n+ 1 matrices ∇2h(σα) with α= 0,1, . . . ,n,
conditioned to g(σα) = 0 and h(σ0) =

√
2Nϵ0, h(σk) =

√
2Nϵ1 with k= 1, . . . ,n. The joint

distribution of the matrices ∇2h(σk) with k= 1, . . . ,n subject to the above conditioning is
derived in [26]. We recall it in the following, discussing in addition the statistics of ∇2h(σ0)
and its correlations with∇2h(σ1), which are the two matrices appearing in the energy profile.
In this section, M := N− n.

The conditional Hessians have a block structure when expressed in an appropriate basis.
We make a particular choice of the vectors ei(σa) for i =M, . . . ,N− 2. As in appendix B, we
define the overlap between the replicas as

q1 = σk ·σl k, l= 1, . . . ,n, k ̸= l. (E20)
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For a= 1, we choose the basis vectors in B1 as:

eM
(
σ1
)
=

σ2 −σ3√
2(1− q1)

eM+1
(
σ1
)
=

σ2 +σ3 − 2σ4√
3 · 2(1− q1)

eM+2
(
σ1
)
=

σ2 +σ3 +σ4 − 3σ5√
4 · 3(1− q1)

· · ·

eN−3
(
σ1
)
=

σ2 + · · ·+σn−1 − (n− 2)σn√
(n− 1)(n− 2)(1− q1)

eN−2
(
σ1
)
=

σ2 + · · ·+σn− (n− 1)q1σ1 +(n− 1)q 1−q1
1−q2

(
qσ1 −σ0

)√
(n− 1)

[
1+(n− 2)q1 − (n− 1)q21 − (n− 1)q2 1−q1

1−q2 (1− q1)
]

(E21)

and, as specified in appendix A,

eN−1
(
σ1
)
=
qσ1 −σ0√

1− q2
.

It is simple to check that all these vectors are all orthogonal to each others under the assump-
tion (E20), and are orthogonal to σ1: therefore, they all belong to the tangent plane τ [σ1].
When using the notation B1 in the following, we assume this choice of basis vectors. Notice
that the typical value of the overlap (E20) between stationary points (as it follows from the
saddle-point calculation of the complexity recalled in appendix B) is q1 = q2, thus at the saddle
point:

eN−2
(
σ1
) q1=q2

=
σ2 + · · ·+σn− (n− 1)qσ0√

(n− 1) [1− q2]
. (E22)

The choice of the basis vectors for σ0 is analogous:

ei
(
σ1
)
= ei

(
σ0
)

i =M, . . . ,N− 3 (E23)

with

eN−2
(
σ0
)
=

σ2 + · · ·+σn− (n− 1)qσ0 +(n− 1) q1−q2

1−q2
(
qσ0 −σ1

)√
(n− 1)

[
1− q2 +(n− 2)(q1 − q2)− (n− 1)(1− q2)

(
q1−q2

1−q2

)2
− 2 (q1−q2)2

1−q2

]
(E24)

and again

eN−1
(
σ0
)
=
qσ0 −σ1√

1− q2
. (E25)
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Notice that when q1 = q2, the vector eN−2(σ
0) simplifies and becomes equivalent to eN−2(σ

1),
and thus all the basis vectors are the same except for eN−1.

At variance with the annealed case, in the quenched setting the problem is not symmetric
in the two configurations σa. Consider first the Hessian at σ1. Its conditional distribution for
finite, arbitrary n is given in [26]: in the basis B1 introduced just above, the unconstrained,
conditioned Hessian takes the following form:

∇2h
(
σ1)

√
N− 1

=



n11M · · · n11N−2 m1
1N−1 0

B1
...

...
...

n1M−1M n1M−1N−2 m1
M−1N−1 0

n11M · · · n1M−1M n1MM + ν1 · · · m1
MN−1 0

... n1M+1M+1 + ν1 0

...
. . . 0

m1
1N−1 · · · m1

M−1N−1 m1
MN−1 · · · m1

N−1N−1 +µ1 0

0 0 0 0 0 0 0
√

2N
N−1 p(p− 1)ϵ1


(E26)

where B1 is a (M− 1)× (M− 1) block with the same statistics defined above in the annealed
case. For q1 = q2 and i, j<M and M⩽ k, l< N− 1 it holds:

E
[
n1ikn

1
jl

]
= δijδkl p(p− 1)

[
1−

(p− 1)
(
1− q2

)
q2p−4

1− q2p−2
q2p−4

]
≡ δijδkl δ

2 (E27)

while for i, j<M

E
[
m1
iN−1m

1
jN−1

]
= δij p(p− 1)

[
1−

(p− 1)
(
1− q2

)
q2p−4

1− q2p−2

]
= δij ∆

2, (E28)

where ∆2 is the same as in (E3). The entries n1ij,m
1
iN−1 with M⩽ i, j < N− 1 form an n× n

block with components that are correlated to each others, but independent from all the other
entries of the matrix. We do not report the expression of the corresponding covariances, since
it is not needed for the calculation below4. The diagonal terms in this n× n block contain
deterministic contributions that arise from the conditioning, with µ1 appearing already in (E4),
and ν1 ̸= µ1. The explicit expression of ν1 is not reported here since it will not be needed in
the remainder of the paper, but can be found in [26] (see equation (60) in appendix F of that

4 In the following, we are interested in determining the eigenvalue density of the Hessian matrices to order 1/N,
meaning that we aim at determining the bulk of the eigenvalues distribution, as well as the typical value of any
isolated eigenvalue that may exist. It turns out that these quantities are insensitive to changes in the variance of O(N0)
components of the matrix, and thus they do not depend on the covariances of the entries of the n× n block.

25



J. Phys. A: Math. Theor. 57 (2024) 07LT01

paper). As before, one finds that the conditional distribution of the Riemannian Hessians in
the quenched case reads:

H
(
σ1
)

√
N− 1

=
H̃Q
(
σ1
)

√
N− 1

−
√

2N
N− 1

pϵ1 ∈ RN−1×N−1, (E29)

where now:

H̃Q
(
σ1)

√
N− 1

=



n11M · · · n11N−2 m1
1N−1

B1
...

n1M−1M n1M−1N−2 m1
M−1N−1

n11M · · · n1M−1M n1MM+ ν1 · · · m1
MN−1

... n1M+1M+1 + ν1

...
. . .

m1
1N−1 · · · m1

M−1N−1 m1
MN−1 · · · m1

N−1N−1 +µ1


.

(E30)

Here Q stands for quenched. In the quenched case, one has therefore n special lines, n− 1 out
of which have exactly the same statistics controlled by the parameters δ2 and ν1, while the
last one has yet different averages µ1 and variances∆2. When n→ 1, only the last special line
survives and one recovers the annealed Hessian distribution discussed above.

We now consider the Hessian at σ0. Its conditional statistics is not given explicitly in [26],
but can be easily derived following the same reasoning of appendix C of that paper. In the basis
B0 defined above, the unconstrained, conditioned Hessian takes the following form:

∇2h
(
σ0)

√
N− 1

=



n01M · · · n01N−2 m0
1N−1 0

B0
...

n0M−1M n0M−1N−2 m0
M−1N−1 0

n01M · · · n0M−1M n0MM +µ0 · · · m0
MN−1 0

... n0M+1M+1 +µ0 0

...
. . . 0

m0
1N−1 · · · m0

M−1N−1 m0
MN−1 · · · m0

N−1N−1 +µ0 0

0 0 0 0 0 0 0
√

2N
N−1 p(p− 1)ϵ0



,

(E31)
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where B0 is again a (M− 1)× (M− 1) block with the same statistics defined above in the
annealed case, but in this case for q1 = q2 and i, j<M and M⩽ k, l< N− 1 it holds:

E
[
n0ikn

0
jl

]
= δijδkl p(p− 1)

[
1−

(p− 1)
(
1− q2

)
q2p−4

1− q2p−2

]
= δklE

[
m0
iN−1m

0
jN−1

]
= δijδkl ∆

2.

(E32)

Once more, the entries n0ij,m
0
iN−1 withM⩽ i, j < N− 1 form an n× n block with components

correlated to each others, but independent from all the other entries of the matrix. Finally, µ0

is obtained from µ1 in (E4) by switching ϵ0 ↔ ϵ1. As it appears from these formulas, in the
case of σ0 the conditioning modifies the variances of the entries that belong to n special lines
and columns of the matrix, in a way that is identical for all rows and columns. Notice that the
covariance of the matrix elements n0il is different with respect to that of the elements n1il, and
it coincides instead with that of the elements ma

iN−1. This is consistent with the fact that, for
n→ 1, one should recover the annealed statistics described in the section above. As before,
one finds that the conditional distribution of the Riemannian Hessians in the quenched case
reads:

H
(
σ0
)

√
N− 1

=
H̃Q
(
σ0
)

√
N− 1

−
√

2N
N− 1

pϵ1 ∈ RN−1×N−1, (E33)

where:

H̃Q
(
σ0
)

√
N− 1

=



n01M · · · m0
1N−1

B0 ...

n0M−1M m0
M−1N−1

n01M · · · n0M−1M n0MM+µ0 · · · m0
MN−1

...
m0

1N−1 · · · m0
M−1N−1 m0

MN−1 · · · m0
N−1N−1 +µ0


.

(E34)

Finally, we discuss the correlations between the entries of these two Hessian. This can be
obtained with an extension of the calculation described in appendix C of [26]. As recalled in
appendix B, at the saddle point one finds that the overlap between replicas is q1 = q2. Then,
for i, j<M and M⩽ k, l< N− 1 it holds:

E
[
n0ikn

1
jl

]
= δijδkl p(p− 1)qp−2

[
1− (p− 1)

q2p−4

1− q2p−2

(
1− q2

)]
≡ δijδkl δ

2
h , (E35)

while

E
[
m0
iN−1m

1
jN−1

]
= δij p(p− 1)qp−3 (−1)

[
1− (p− 1)

1
1− q2p−2

(
1− q2

)]
≡ δij∆

2
h, (E36)

where ∆2
h is the same appearing in (E3). Notice that δ2h differs from δ2 by a factor of qp−2;

instead ∆2
h differs from ∆2 by a factor of qp−3, meaning that the two quantities coincide for

p= 3.
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E.2.2. Spectral statistics and isolated eigenvalue. Let us discuss the spectral properties of
the conditional Hessian in the case in which n is an integer parameter. As in the annealed case,
we neglect the constant shifts. In the quenched setting, the distribution of the two matrices is
not equivalent: we begin by discussing the shifted Hessian at σ1, defined in equation (E30).
This matrix has (n− 1) lines with identical statistics given by δ2,ν1, and one last line with
statistics controlled by∆2,µ1. For integer n the isolated eigenvalues, whenever they exist, are
solutions of the equation:[

λ− ν1 − δ2gσ (λ)
]n−1 [

λ−µ1 −∆2gσ (λ)
]
= 0, (E37)

which is again obtained imposing that the resolvent of (E30) projected onto the n-dimensional
subspace corresponding to the finite-rank perturbations has some poles. One sees that two dif-
ferent eigenvalues may exist, one of which with degeneracy (n− 1). In the replica calculation,
however, one is required to take the limit n→ 0 at the end of the calculation. It appears that in
this limit, the first factor of (E37) goes into the denominator, and therefore the corresponding
solution becomes a zero, and not a pole, of the resolvent. In the limit n→ 0, the equation (E37)
can exhibit only one meaningful solution, whenever λ−µ1 −∆2gσ(λ) = 0. The correspond-
ing solution is given by (E11), as in the annealed case, and it exists whenever (E8) is satisfied.
Notice that combining this argument with the discussion in the annealed case, one can also
conclude that (E30) subtracted of the last element µ1 has no isolated eigenvalue in the limit
n→ 0.

We now consider the shifted Hessian at σ0, defined in equation (E34). In this case, there
are n special lines with identical statistics. For integer n the isolated eigenvalue, whenever it
exists, is the solution of the following equation:[

λ−µ0 −∆2gσ (λ)
]n

= 0, (E38)

and has degeneracy n. In the limit n→ 0, however, this equation has no solution, and thus one
recovers the spectrum of an unperturbed GOE matrix.

E.2.3. Change of basis. We remark that when q1 = q2, the matrix of change of basis B0 →
B1 is exactly the same as in the annealed case, (E15). Therefore one can write the projection
of this matrix onto the basis of τ [σ1] as

R−1
0→1

∇2h
(
σ0
)

√
N− 1

R0→1

∣∣∣∣
⊥
=Π1

q ·
H̃Q
(
σ0
)

√
N− 1

· Π1
q+ l0N−1N−1e

1
N−1

[
e1N−1

]T
(E39)

where l0N−1N−1 is the same as in (E17). The other change of basis is obtained in an analogous
way.

Appendix F. The p=3 energy profile: deformation along softest Hessian
modes

In this appendix, we determine the expression of the profile (C3) under the assumption that
the unconstrained Hessians have the structure and the statistics discussed above, which follows
from conditioning on the properties of the various replicas σa. As before, we assume p= 3.
We consider both the case in which v is chosen to be aligned along the direction of the softest
mode of the HessianH(σ0), and the one in which v is chosen to be aligned along the direction
of the softest mode of the HessianH(σ1).
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F.1. Softest mode at σ0

We consider the case in which v is chosen to be aligned along the direction of the softest mode
e0min of the Hessian H(σ0); we introduce the following notation for the minimal eigenvalue
of the shifted Hessian, and for the component squared of the corresponding eigenvector along
the direction e0N−1:

H̃
(
σ0
)

√
N− 1

· e0min = λ0
min e

0
min, u0 =

(
e0min · e0N−1

)2
. (F1)

We recall from equation (9) the choice:

v→ v0soft =
e0min −

√
u0 e0N−1√

1− u0
.

Plugging this expression, we find

v0soft ·
∇2h

(
σ0
)

√
N− 1

·σ1 =

(
e0min −

√
u0 e0N−1√

1− u0

)
·
∇2h

(
σ0
)

√
N− 1

·
(
qσ0 −

√
1− q2e0N−1

)
=

√
1− q2

1− u0

(√
u0 e0N−1 − e0min

)
·
∇2h

(
σ0
)

√
N− 1

· e0N−1

=

√
u0 (1− q2)
1− u0

(
µ0 −λ0

min

)
,

(F2)

and

v0soft ·
∇2h

(
σ0
)

√
N− 1

· v0soft =
1

1− u0
(
λ0
min + u0µ0 − 2u0λ0

min

)
. (F3)

Using a variant of (E19) and (E39) applied to∇2h(σ1), and the fact that v0soft ⊥ e0N−1, one also
obtains

v0soft ·
∇2h

(
σ1
)

√
N− 1

· v0soft =

(
e0min −

√
u0 e0N−1√

1− u0

)
· H̃1

x√
N− 1

·

(
e0min −

√
u0 e0N−1√

1− u0

)

=
1

1− u0

(
e0min ·

H̃1
x√

N− 1
· e0min − 2

√
u0 e0N−1 ·

H̃1
x√

N− 1
· e0min + u0µ1

)

=
1

1− u0

(
e0min ·

H̃1
x√

N− 1
· e0min − 2

√
u0
√
1− u0 v0soft ·m1 − u0µ1

)
,

(F4)

where x ∈ {A,Q} and m1 = (m1
1N−1, . . . ,m

1
M−1N−1). Now, the definition of v0soft is such that

e0min =
√
1− u0 v0soft +

√
u0e0N−1, which implies

λ0
min

√
u0 = e0N−1 ·

H̃0
x√

N− 1
· e0min =

√
1− u0 v0soft ·m0 +

√
u0µ0, (F5)
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wherem0 = (m0
1N−1, . . . ,m

0
M−1N−1). For p= 3, making use of the fact thatm0 =m1 ≡m, one

finds therefore
√
1− u0 v0soft ·m=

√
u0(λ0

min −µ0), which plugged into (F4) gives:

v0soft ·
∇2h

(
σ1
)

√
N− 1

· v0soft =
1

1− u0

(
e0min ·

H̃1
x√

N− 1
· e0min − 2u0

(
λ0
min −µ0

)
− u0µ1

)
. (F6)

Therefore, when v→ v0soft, the energy profile (C3), under the conditions that σ
a are stationary

points with energy density ϵa, becomes equal to:

h(x) [γ; f ]−→
(
γ3 + 3γ2β q

)√
2Nϵ1 +

(
β3 + 3β2γ q

)√
2Nϵ0 + f 3h

(
v0soft

)
+ γβf

√
N− 1

√
u0 (1− q2)
1− u0

(
µ0 −λ0

min

)
+
f 2

2

√
N− 1

[
γ

1− u0

(
e0min ·

H̃1
x√

N− 1
· e0min − 2u0

(
λ0
min −µ0

)
− u0µ1

)

+
β

1− u0
(
λ0
min + u0µ0 − 2u0λ0

min

)]
.

(F7)

This expression depends on four random variables: the minimal eigenvalue λ0
min and its eigen-

vector component u0, the rescaled energy h(v0soft), and the quantity:

χ0
x := e0min ·

H̃1
x√

N− 1
· e0min (F8)

where the subscript x ∈ {Q,A} keeps track of whether we are performing the conditioning of
the Hessian statistics under the annealed or the quenched assumptions. The average energy
profile is obtained plugging (F7) into (D6) and (D9) and performing the corresponding aver-
ages. In the limit of large N, however, the quantities λ0

min,u
0 and χ0 concentrate, meaning that

their distribution converges around their typical value [27, 32]. In this limit, one can therefore
replace the quantities in (F7) with their typical value (under the conditional distribution), and
check that the remaining terms in the average factorize with the denominators in the annealed
case, or converge to unity in the limit n→ 0 in the quenched case. Let us denote with λ0

typ,u
0
typ

and χ0
x,typ the typical values of the quantities, and use that the typical value of h(v

0
soft) is equal

to zero5. Then we find that the energy profile when v→ v0soft reduces to:

ϵ
(x)
v0soft

[γ; f ] : = lim
N→∞

h(x) [γ; f ]√
2N

=
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3β2γ q

)
ϵ0

+ γβf

√
u0typ

(
1− q2

)
2
(
1− u0typ

) (µ0 −λ0typ

)
+

f2

2
√
2

[
β

1− u0typ

(
λ0typ + u0typµ0 − 2u0typλ

0
typ

)
− γ

1− u0typ

(
u0typµ1 + 2u0typ

(
λ0typ −µ0

))]
+

f2

2
√
2

γ

1− u0typ
χ0
x,typ

(F9)

5 This follows from the fact that the vector v0soft has zero overlap with σa, and thus the random variable h(v0soft) is
uncorrelated to any of the random variables on which we are conditioning in this calculation. As a consequence,
h(v0soft) fluctuates around its average value, that is zero.
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x ∈ {Q,A} , where we have

χ0
Q,typ = lim

n→0
Econd
n

[
e0min ·

H̃1
Q√

N− 1
· e0min

]
,

χ0
A,typ = Econd

1

[
e0min ·

H̃1
A√

N− 1
· e0min

]
.

(F10)

The typical values λ0
typ,u

0
typ are known, and discussed in appendix E. To get the energy

profile, it remains to determine the quantities (F10). We discuss this in appendix G.

F.2. Softest mode at σ1

Let us now consider the case in which v is chosen to be aligned along the direction of the
softest mode ofH(σ1), i.e. in the same notation as above,

v→ v1soft =
e1min −

√
u1 e1N−1√

1− u1
, u1 =

(
e1min · e1N−1

)2
,

H̃
(
σ1
)

√
N− 1

· e1min = λ1
mine

1
min.

In this case, using that for p= 3 one has ∇2h(σ0) ·σ1 =∇2h(σ1) ·σ0, we find

v1soft ·
∇2h

(
σ0
)

√
N− 1

·σ1 = v1soft ·
∇2h

(
σ1
)

√
N− 1

·σ0

=

(
e1min −

√
u1 e1N−1√

1− u1

)
·
∇2h

(
σ1
)

√
N− 1

·
(
qσ1 −

√
1− q2e1N−1

)
=

√
1− q2

1− u1

(√
u1 e1N−1 − e1min

)
·
∇2h

(
σ1
)

√
N− 1

· e1N−1

=

√
u1 (1− q2)
1− u1

(
µ1 −λ1

min

)
,

(F11)

and

v1soft ·
∇2h

(
σ1
)

√
N− 1

· v1soft =
1

1− u1
(
λ1
min + u1µ1 − 2u1λ1

min

)
(F12)

and finally

v1soft ·
∇2h

(
σ0
)

√
N− 1

· v1soft =
1

1− u1

(
e1min ·

H̃0
x√
M

· e1min − 2u1
(
λ1
min −µ1

)
− u1µ0

)
. (F13)

Therefore, when v→ v1soft, the energy profile (C3), under the conditions that σ
a are stationary

points with energy density ϵa, becomes equal to (F7) by swapping the indices 0 and 1, and
same for β and γ, in the terms that contain f. Introducing

χ1
x := e1min ·

H̃0
x√

N− 1
· e1min, (F14)
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as well as the typical values as before, we get that the energy profile in this case reads:

ϵ
(x)
v1soft

[γ; f ] : = lim
N→∞

h(x) [γ; f ]√
2N

=
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3β2γ q

)
ϵ0

+ γβf

√
u1typ

(
1− q2

)
2
(
1− u1typ

) (µ1 −λ1typ

)
+

f2

2
√
2

[
γ

1− u1typ

(
λ1typ + u1typµ1 − 2u1typλ

1
typ

)
− β

1− u1typ

(
u1typµ0 + 2u1typ

(
λ1typ −µ1

))]
+

f2

2
√
2

β

1− u1typ
χ1
x,typ

(F15)

x ∈ {Q,A}, where now

χ1
Q,typ = lim

n→0
Econd
n

[
e1min ·

H̃0
Q√

N− 1
· e1min

]
,

χ1
A,typ = Econd

1

[
e1min ·

H̃0
A√

N− 1
· e1min

]
.

(F16)

Notice that despite the analogy of the expression, in the quenched setting the problem is
not symmetric since the statistics of the Hessian matrices is different for a= 0 and a= 1,
and therefore the typical values of λamin,u

a can be quite different for a= 0 and a= 1, as we
commented in appendix E. We discuss the quantities (F16) in appendix G.

Appendix G. Eigenvectors overlaps

Themanipulations of appendix F show that in order to determine the typical value of the energy
profile, one has to compute the typical value of the terms (F8) and (F14). Using the eigenvalue
decomposition H̃a

x =
∑N−1

α=1 λ̃
a
αu

a
α[u

a
α]
T, for x ∈ {A,Q} and a ∈ {0,1}, we can formally write

χ0
x =

N−1∑
α=1

λ̃1
α

[
emin

(
σ0
)
·u1α
]2
, χ1

x =
N−1∑
α=1

λ̃0
α

[
emin

(
σ1
)
·u0α
]2
, (G1)

where the dependence of the eigenvalue and eigenvector distribution on x is implicit. In the
limit of large matrix size N≫ 1, the quantities χax with a= 0,1 converge to their average.
Following [32, 33], we introduce the averaged squared overlap between eigenstates of two
different, correlated matrices of size (N− 1)× (N− 1):

Φ
(
λ0
α,λ

1
β

)
:= (N− 1)E

[(
uλ0

α
·uλ1

β

)2]
, (G2)

where the expectation is over the realizations of the random matrices. We remark that such
expression can take different expressions whether there are zero, one or two isolated eigenval-
ues among λ0

α,λ
1
β [33]. We define with ρ̃aN(λ) the average eigenvalues density of the matrices

H̃a
x (the leading order term, as well as eventual subleading corrections corresponding to isol-

ated eigenvalues of the matrix). Then the term to be determined can be formally written as:

χ0
x,typ =

ˆ
λρ̃1N (λ) Φ

(
λ0
min,λ

)
dλ, χ1

x,typ =

ˆ
λρ̃0N (λ) Φ

(
λ1
min,λ

)
dλ. (G3)
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In order to compute these terms, one has to determine both the density ρ̃aN(λ) of each matrix
H̃a
x (paying attention to the possible existence of isolated eigenvalues), as well as the typical

overlaps between the eigenvectors of H̃a
x and the minimal eigenvector of H̃b̸=a

x , which are
correlated according to appendix E. In the following, we discuss the quenched and annealed
case separately.

G.1. Eigenvectors overlaps: the annealed setting.

Without loss of generality, we focus on the case in which v→ v0soft, and we have to determine
the typical value

χ0
A,typ = Econd

1

[
e0min ·

H̃1
A√

N− 1
· e0min

]
, (G4)

where e0min is the eigenvector associated to the minimal eigenvalue of the shifted Riemannian
Hessian H̃A(σ

0) given in (E6). As we argued in appendix E.1, the matrix H̃1
A can have one

or zero isolated eigenvalues. On the contrary, while H̃0
A could a priori present an isolated

eigenvalue, it can be checked that for no value of ϵgs ⩽ ϵ0, ϵ1 ⩽ ϵth and q, does µ0 generate
an isolated eigenvalue in the region of parameters in which the complexity Σ(ϵ1,q|ϵ0)> 0.
Therefore, the minimal eigenvalue is at the edge of the semicircle, λ0

min =−2σ. This implies
that the rescaled overlap (G2) is of O(1) for all possible values of λ. References [32, 33]. In
the limit of N→+∞ we have

ρ̃1N (λ) = ρσ (λ)+
Θ
(
|µ1| − 2σ+∆2/σ

)
N

δ
(
λ−λ1

iso

)
+O

(
1
N2

)
, ρσ (λ) =

√
4σ2 −λ2

2πσ2
,

(G5)

where Θ is non-zero only whenever (E8) holds. Then we obtain

χ0
typ, A =

ˆ
λρσ (λ) Φ

(
λ0
min,λ

)
dλ+

Θ

N
λ1
isoΦ

(
λ0
min,λ

1
iso

)
+O

(
1
N2

)
=

ˆ
λρσ (λ) λΦ

(
λ0
min,λ

)
dλ+O

(
1
N

)
. (G6)

From [32, 33] one can get the expression for the rescaled, squared overlapsΦ(λ0
min,λ) between

eigenvalues belonging to the continuous part of the distribution. In the specific case in which
λ0
min =−2σ, this reads

Φ(−2σ,λ) =
σ4σ2

W

(
2σ2 −σ2

W

)(
2σ4 − 2σ2σ2

W+σ4
W+σ3λ−σσ2

Wλ
)2 +O

(
1
N

)
, λ ∈ [−2σ,2σ] (G7)

where the parameters given in (E3) for general values of p. Therefore

χ0
A,typ =

ˆ 2σ

−2σ
λ

√
4σ2 −λ2

2π

σ2σ2
W

(
2σ2 −σ2

W

)(
2σ4 − 2σ2σ2

W+σ4
W+σ3λ−σσ2

Wλ
)2 dλ+O

(
1
N

)
(G8)

=
1
2
σ2σ2

W

(
2σ2 −σ2

W

) a
b3
c2 + 2

√
1− c2 − 2√
1− c2

+O
(
1
N

)
(G9)
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where


a= 2σ4 − 2σ2σ2

W+σ4
W

b= σ3 −σσ2
W

c= 2σb/a.

(G10)

For p= 3 one has σ =
√
6 and σW =

√
6(1− q) and this expression reduces to:

χ0
A,typ =

1
2
σ2σ2

W

(
2σ2 −σ2

W

) a
b3
c2 + 2

√
1− c2 − 2√
1− c2

=−2
√
6q. (G11)

Let us now consider χ1
A,typ. As we have remarked above, there exist values of ϵ0, ϵ1,q such

that Σ(ϵ1,q|ϵ0)> 0 and such that the matrix H̃1
A exhibits an isolated eigenvalue (meaning that

µ1 satisfies equation (E8)). It can be checked that for this regime of parameters µ1 is negative,
and so it is the isolated eigenvalue, given that the two quantities have the same sign [33].
Therefore, when the isolated eigenvalue exists, it is the minimal eigenvalue of H̃1

A. On the other
hand, we find that µ0 does not generate an isolated eigenvalue in the regime of parameters we
are interested in. When λ1

min is isolated, i.e. when µ1 satisfies equation (E8), to compute χ1
A,typ

we have use a different expression for the rescaled, squared overlap Φ. In general, we can
write

χ1
A,typ =

ˆ 2σ

−2σ
λ

√
4σ2 −λ2

2πσ2

[
Φ(−2σ,λ)

(
1−Θ

(
|µ1| − 2σ+∆2/σ

)
+ Φ

(
λ1
iso,λ

)
Θ
(
|µ1| − 2σ+∆2/σ

))]
dλ+O

(
1
N

)
(G12)

where the expression for Φ(λ1
iso,λ) has been computed in [33], and applied to our case reads

Φ
(
λ1
iso,y

)
= qσ,∆

(
λ1
iso,µ1

) 4∆2σ4√[
λ1
iso

]2 − 4σ2

bc− ad
c2 + d2

− 4σ4∆4 b1c1e1 − a1d1e1 − a1c1f1 − b1d1f1
(
4σ2 − y2

)(
c21 + d21

)(
e21 + f21

)
− 8σ4∆2 c1b2 − a2b2∆2 − a2c1σ2

W −σ2
W∆

2
(
4σ2 − y2

)(
c21 +∆4

)(
b22 +σ4

W

) +
∆4gσ

(
λ1
iso

)(
λ1
iso −µ1

) 1
a23 + b23

]
(G13)
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with parameters

a=−
(
4σ2 −λ1

isoy
)

b=
√[

λ1
iso

]2 − 4σ2

c=
(
2σ2 −σ2

W

)2 (
λ1
iso − y

)2 − 2σ2
W

(
2σ2 −σ2

W

)√[
λ1
iso

]2 − 4σ2
(
λ1
iso − y

)
+σ4

W

([
λ1
iso
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)
+σ4

W

(
y2 − 4σ2

)
d=−2σ2

W
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−σ2

W
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λ1
iso

]2 − 4σ2 +
(
2σ2 −σ2

W

)(
λ1
iso − y

)]
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(
λ1
iso − y
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√[

λ1
iso

]2 − 4σ2
(
y−λ1

iso

)
+
[
λ1
iso

]2
+ y2 − 8σ2

b1 =−2

[
y−λ1

iso −
√[

λ1
iso

]2 − 4σ2

]
c1 =−2µ0σ

2 −∆2y+ 2σ2y

d1 =∆2

e1 =
(
σ2
W− 2σ2

)2 (
λ1
iso − y

)2 − 2σ2
W

(
2σ2 −σ2

W

)√[
λ1
iso

]2 − 4σ2
(
λ1
iso − y

)
+σ4

W

([
λ1
iso

]2 − 4σ2
)
+σ4

W

(
y2 − 4σ2

)
f1 =−2σ2

W

[(
2σ2 −σ2

W

)(
λ1
iso − y

)
−σ2

W

√[
λ1
iso

]2 − 4σ2

]
a2 = λ1

iso − y+
√[

λ1
iso

]2 − 4σ2

b2 =
(
σ2
W− 2σ2

)(
λ1
iso − y

)
+σ2

W

√[
λ1
iso

]2 − 4σ2

a3 = y−µ0 −
∆2y
2σ2

b3 =
∆2

2σ2
,

(G14)

and where the function qσ,∆ and the explicit expression of λ1
iso are given in (E13) and (E11).

G.2. Eigenvectors overlaps: the quenched setting.

We discuss first the case in which v→ v0soft, and we have to determine the expectation

χ0
Q,typ = lim

n→0
Econd
n

[
e0min ·

H̃1
Q√

N− 1
· e0min

]
. (G15)

In this case e0min is the eigenvector associated to the minimal eigenvalue of the shifted
Riemannian Hessian H̃0

Q, which together with H̃1
Q is defined in equations (E30) and (E34)

respectively. As argued in appendix E.2, in the limit n→ 0, the matrix H̃0
Q has no isolated
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eigenvalues, because the zeros of equation (E38) become poles in the limit n→ 0. On the con-
trary, in the limit n→ 0 the matrix H̃1

Q could present an isolated eigenvalue depending on the
strength of µ1. Hence, λ0

min =−2σ, and by applying the same reasoning as in the annealed
case, we are left with the fact that any possible contribution Φ(λ0

min,λ
1
iso) comes at an order of

1/N an can be neglected to leading order at large N. Hence, one ends up with

χ0
Q,typ = χ0

A,typ.

We turn now to the case v→ v1soft, where we need to determine

χ1
Q,typ = lim

n→0
Econd
n

[
e1min ·

H̃0
Q√

N− 1
· e1min

]
. (G16)

This case is a slightly more complicated, since H̃1
Q can display an isolated eigenvalue in the

limit n→ 0, and thus one has to consider how the function Φ(λ1
iso,λ) changes in the quenched

case, for λ ∈ [−2σ,2σ]. The way to proceed is to replicate the computation in [33] in the
case of finite n, and then send n→ 0. It turns out that this calculation reproduces the result in
equation (G13), implying that

χ1
Q,typ = χ1

A,typ.

G.3. On quenched vs annealed.

As we recalled in appendix B, when computing the complexity Σ(ϵ1,q|ϵ0) one obtains the
identity (B8), which implies that the calculation performed within the quenched formalism
(making use of the replica trick with n→ 0) gives the same result as that performed within the
annealed formalism (which corresponds to n= 1). This follows from the fact that the typical
value of the overlap parameter q1, giving the typical overlap between the replicas of the sec-
ondary configuration σ1, takes the particularly simple value q1 = q2. This identity does not
imply a priori that the typical energy profile computed within the quenched prescription is
the same as that computed within the annealed prescription, since the statistics of the condi-
tional Hessians (in particular, the finite rank perturbations) is different in the two cases. We
find however that the two prescription give the same result for the energy profile, too, to lead-
ing order in N. In fact, the main difference between the two prescriptions is in the statistics of
the conditional Hessian H(σ0): in the quenched case, this Hessian exhibits n special line and
columns with identical statistical properties, whose effect vanishes as n→ 0. In this limit, one
recovers the statistics of the unconditional Hessian. This is consistent with the fact that in the
quenched setup the reference configuration σ0 is selected first, independently of the second-
ary one σ1, and therefore the statistics of its Hessian should not be affected by the coupling to
σ1. On the contrary, in the annealed framework the primary and secondary configurations are
treated on the same footing, and the conditional distribution of the Hessian at σ0 has a special
line and column that depends on the correlation with σ1. The two prescriptions give different
results whenever this special line affects the eigenvalue distribution of the Hessian by generat-
ing isolated eigenvalues, which are not there in the quenched case. However, we find that this
circumstance is never realized for the values of parameters ϵa,q that are of interest (such that
Σ(ϵ1,q|ϵ0)> 0, ϵgs ⩽ ϵa ⩽ ϵth and q ∈ [0,1]). As a consequence, in the regime of parameters
that we are interested in the typical energy profile is the same with both prescriptions. For this
reason, we will now drop the Q or A pedices in the following.
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Appendix H. Resulting energy profiles

We give in this appendix the final result for the typical energy profile, in the case p= 3. We
separate the cases in which v is chosen to be related to the softest mode of the Hessian at the
reference and secondary configuration, respectively.

Softest mode at σ0. As it follows from the discussion of appendices F and G, in this case
λ0
typ =−2σ =−2

√
6; Moreover, emin(σ

0) is a random vector uniformly distributed on SN(1),
so that its typical overlap with eN−1(σ

0) is u0typ = emin(σ
0) · eN−1(σ

0) = 0. Using our previ-
ously found results, the energy profile (F9) simplifies into:

ϵv0soft [γ; f ] =
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3β2γ q

)
ϵ0 −

√
3 f 2 (γ) β− f 2 (γ) γ

√
3q,

which corresponds to the equation (12) in the main text.
Softest mode atσ1. In this case there are two possibilities: if there is no isolated eigenvalue

at H̃(σ1), then λ1
min =−2σ and we obtain a similar expression as above:

ϵv1soft [γ; f ] =
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3β2γ q

)
ϵ0 −

√
3 f 2 (γ) γ− f 2 (γ) β

√
3q.

If there is a negative isolated eigenvalue, then the formula changes, and equation (F15)
becomes:

ϵv1soft [γ; f ] =
(
γ3 + 3γ2β q

)
ϵ1 +

(
β3 + 3β2γ q

)
ϵ0 + γβf

√
u1typ (1− q2)

2
(
1− u1typ

) (µ1 −λ1
typ

)
+

f 2

2
√
2

[
γ

1− u1typ

(
λ1
typ + u1typµ1 − 2u1typλ

1
typ

)
− β

1− u1typ

(
u1typµ0 + 2u1typ

(
λ1
typ −µ1

))]
+

f 2

2
√
2

β

1− u1typ
χ1
iso

where we recall the values of the various quantities:

λ1
typ =

2µ1σ
2 −∆2µ1 − sign(µ1)∆

2
√

µ2
a− 4(σ2 −∆2)

2(σ2 −∆2)

u1typ = qσ,∆
(
λ1
typ,µ1

)
χ1
iso :=

ˆ 2σ

−2σ
λ

√
4σ2 −λ2

2πσ2
Φ
(
λ1
typ,λ

)
dλ

where the integral χ1
iso can be easily computed numerically. This expression coincides with

equation (14) in the main text.

Appendix I. Gradient along the geodesic path

In this appendix, we derive the statistical distribution of the vector ∇h(σ[γ; f = 0]) at each
configuration along the geodesic path, parametrized as (4) with f(γ) = 0. We denote each con-
figuration along the path simply as σ(γ) := σ[γ;0], and take p= 3. For any fixed value of
γ ∈ (0,1), plugging the expression for σ(γ) inside the formula for ∇h one gets

∇h(σ (γ)) = γ2∇h
(
σ1
)
+β2∇h

(
σ0
)
+ γ β∇2h

(
σ0
)
·σ1, (I1)
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which using (E14) and conditioning on the properties of σa reduces to:

∇h(σ (γ)) = γ23
√
2Nϵ1σ

1 +β23
√
2Nϵ0σ

0 + γβ∇2h
(
σ0

)
·
(
qσ0 −

√
1− q2eN−1

(
σ0

))
= γ23

√
2Nϵ1σ

1 +β23
√
2Nϵ0σ

0 + γβ
[
6q

√
2Nϵ0σ

0 −
√

1− q2∇2h
(
σ0

)
· eN−1

(
σ0

)]
.

(I2)

We now consider the vector g(γ) := g(σ(γ)), that is the projection of ∇h on the (N− 1)-
dimensional tangent plane τ [σ(γ)]. We choose a basis of this tangent plane in such a way that
the first N− 2 elements span the subspace orthogonal to both σ0,σ1; we denote them with
x1, . . . ,xN−2 as in appendix A. The remaining vector equals to

eN−1 (γ) := eN−1 (σ (γ)) = A
(
σ0 +Cσ1

)
, A=

(
1+ 2Cq+C2

)−1/2
, C=−γq+β

γ+βq
.

(I3)

This vector is orthogonal to σ(γ) and has unit norm. It is simple to check that it coin-
cides with the tangent vector to the geodesic path at the point σ(γ). Therefore, the gradient
g(γ) = g∥(γ)+ g⊥(γ), where g∥(γ) = (g(γ) · eN−1(γ))eN−1(γ) is the component tangent to
the geodesic, while g⊥(γ) is the orthogonal one. Using that

eN−1 (γ) = (A+ACq)σ0 −AC
√
1− q2eN−1

(
σ0
)

(I4)

we see that the tangent component equals to:

∇h(σ (γ)) · eN−1 (γ) = 3γ2
√
2Nϵ1 (Aq+AC)+ 3β2

√
2Nϵ0 (A+ACq)

+ γβ
[
6q

√
2Nϵ0 (A+ACq)−

√
1− q2 eN−1 (γ) ·∇2h

(
σ0

)
· eN−1

(
σ0

)]
.

(I5)

One can check explicitly that this expression vanishes at the point γ where the geodesic energy
profile reaches its maximum.

Consider now the orthogonal component of the gradient. In the notation of appendix E, we
see that component-wise in the chosen local basis it holds for i< N− 1:

∇h(σ (γ))√
N− 1

· xi =−γβ
√
1− q2xi ·

∇2h
(
σ0
)

√
N− 1

· eN−1
(
σ0
)
=−γβ

√
1− q2m0

i,N−1. (I6)

Therefore, the orthogonal component g⊥(γ) is proportional to the vector that makes up the
last column of the shifted Hessian H̃(σ0) (neglecting the last component of the column). This
vector is in general not vanishing at the point that corresponds to the maximum of the energy
profile along the geodesic. We define the normalized vector

vHess = Z
N−2∑
i=1

[
xi · H̃

(
σ0
)
· eN−1

(
σ0
)]

xi

=
1√∑N−2

i=1

[
m0
i N−1

]2 (m0
1N−1,m

0
2N−1, . . . ,m

0
N−2N−1,0

)T
, (I7)

which is orthogonal to both σa (Z is the normalization factor). Plugging this into (11) and
making use of the fact that the entries ma

iN−1 of the Hessians are uncorrelated to all other
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entries of the Hessian matrices, we see that the third line in equation (11) vanishes on average,
while in the second line we have:

E

[
vHess ·

H̃
(
σ0
)

√
2N

· eN−1
(
σ0
)]

= E


√∑N−2

i=1

[
m0
i N−1

]2
2N


=

√
∆2

2
+O

(
1
N

)
p=3
=

√
3(1− q2)
1+ q2

+O
(
1
N

)
, (I8)

which leads to equation (15) in the main text.
Finally, we determine the overlap between vHess and v1soft, to show that the two vectors are

correlated when u1typ ̸= 0. It holds:

vHess · v1soft = eN−1
(
σ0
)
·
∇2h

(
σ0
)

√
N− 1

· v1soft =
qσ0 −σ1√

1− q2
·
∇2h

(
σ0
)

√
N− 1

· v1soft

=− σ1√
1− q2

·
∇2h

(
σ0
)

√
N− 1

· v1soft, (I9)

which is equivalent to (F11) and thus ofO(1) and non-vanishing when u1typ ̸= 0, as claimed in
the main text.
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