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Complexity of energy barriers in mean-field glassy systems
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Abstract – We analyze the energy barriers that allow escapes from a given local minimum in a
complex high-dimensional landscape. We perform this study by using the Kac-Rice method and
computing the typical number of critical points of the energy function at a given distance from
the minimum. We analyze their Hessian in terms of random matrix theory and show that for a
certain regime of energies and distances critical points are index-one saddles, or transition states,
and are associated to barriers. We find that the transition state of lowest energy, important for
the activated dynamics at low temperature, is strictly below the “threshold” level above which
saddles proliferate. We characterize how the quenched complexity of transition states, important
for the activated processes at finite temperature, depends on the energy of the state, the energy of
the initial minimum, and the distance between them. The overall picture gained from this study
is expected to hold generically for mean-field models of the glass transition.

Copyright c© EPLA, 2019

Many complex systems in physics, biology and computer
science are characterized by high-dimensional landscapes
full of local minima and saddles of any order. Character-
izing the statistical properties of critical points in these
energy landscapes is instrumental to explain and predict
the static and dynamic behavior of such systems [1,2].

Much of the current understanding of this problem
comes from the research on the glass transition and on
spin-glasses, which played a major role in developing
methods to study the generic properties of rough high-
dimensional landscapes. Several numerical investigations
have introduced ways to map out the network of local
minima of the potential energy landscape associated to
models of glass-formers, and to characterize their proper-
ties [3–8]; whereas theoretical works, started in the 1980s
with the development of spin-glass theory [9–12], have ob-
tained the number of critical points and local minima in
mean-field models of glasses. Recently, a regain of in-
terest on this subject has come from computer science,
and, in particular, machine learning [13] where many cen-
tral questions concern the statistical properties of rough
high-dimensional landscapes originating from the study of
the multi-dimensional profile of loss functions. Concomi-
tantly, advances in probability theory and mathematical

physics are currently allowing to put the theoretical
physics methods on a firmer basis and to obtain new
results [14–25].

Despite this great amount of progress on enumerat-
ing and classifying local minima, the characterisation
of the typical energy barriers between them is still to
a large extent an open question. The main reason is
that, notwithstanding numerical [26–30] and theoreti-
cal [12,31–33] attempts in the context of the glass tran-
sition, a method to analyze barriers in rough-landscapes
is lacking. This is a main obstacle for the development of
a theory of dynamics in glassy systems, and in many other
contexts where such landscapes play an important role.

Here we show how to solve this major challenge for a
central model of rough energy landscapes and of the glass
transition [34,35]. Generalizing a method we developed
in [24], we work out the full geometrical organization of the
typical index-one saddles (heneceforth called transition
states) that enable escapes from local minima in the spher-
ical p-spin model [36]. Our theoretical framework, which
builds on the Kac-Rice formula for the computation of sta-
tionary points of random functionals [14–20,22], allows us
to obtain general results that are expected to hold qual-
itatively for complex high-dimensional landscapes. From
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the mathematical point of view, this represents a first im-
portant step towards a full characterization of the Morse
complex of random high-dimensional functions.

The energy functional of the spherical p-spin model
reads

E[s] = −
∑

〈i1,i2,...,ip〉
Ji1,i2,...,ipsi1si2 . . . sip , (1)

where the sum runs over all the possible p-uplets of indexes
ik (going from 1 to N); the configuration s = (s1, . . . , sN )
lives on an N -dimensional hypersphere, i.e.,

∑N
i=1 s2

i = N ,
and the quenched random couplings Ji1,i2,...,ip are i.i.d.
normally distributed random variables with zero mean
and variance 〈J2〉 = p!/2Np−1. At energy density ε =
limN→∞ E[s]/N higher than the ground state, ε > εgs,
the model exhibits a number of stationary points which
grows exponentially with the dimension N . Their stabil-
ity changes as a function of ε and can be described in
terms of the index, i.e., the number of downhill direc-
tions of the landscape. At high energy the overwhelm-
ing majority of critical points are saddles, with an index
proportional to N . At low energy minima are instead ex-
ponentially more frequent than saddles [11,17,37]. The
transition between these two regimes is sharp and oc-
curs at a value of the energy density called threshold,
εth(p) ≡ −√

2(p − 1)/p, at which typical critical points
are characterized by an extensive (in N) number of di-
rections with an almost zero curvature. Low-temperature
dynamics of the p-spin model starting from high-energy
initial conditions is essentially a weak-noise dynamical
descent in the energy landscape (it becomes a gradi-
ent descent in the limit of zero temperature). At small
temperatures, penetrating below the threshold and reach-
ing the equilibrium energy requires time scales that grow
exponentially with N [38–40]. On these extremely long
time scales the system decreases its energy by escap-
ing from local minima via transition states, i.e., crossing
barriers. This dynamical regime has been studied nu-
merically for some mean-field glassy models in [41–45].
Rigorous results have been obtained for the Random En-
ergy Model [46–48]. In order to develop a theory of ac-
tivated dynamics in this and more complicated settings,
it is crucial to understand how the transition states are
organized in configuration space. Pioneering works ad-
dressed this problem for mean-field glass systems like the
p-spin at the end of the 1990s [12,31–33,49]. However
the task proved to be so challenging that many central
questions remained unanswered. For instance, it is still
unknown whether the system has to climb up to the
threshold to escape from local minima or can instead
sneak through selected paths that involve lower-energy
barriers.

Our goal is to address this and similar issues by the
quenched Kac-Rice formalism we developed in [24]. Our
starting point is the computation of the typical number of
saddles surrounding a given minimum. This problem was

partially addressed in [12] but in a simpler setting1. For
convenience, we re-define the state variables setting them
on the unit sphere, σ = s/

√
N , and introduce the rescaled

energy h[σ] ≡ √
2/NE[

√
Nσ] (see footnote 2). We denote

with g [σ] and H[σ] its gradient vector and Hessian ma-
trix, respectively3. We take a fixed minimum σ0 drawn
at random from the population of minima with energy ε0
(εgs ≤ ε0 ≤ εth), and define the number Nσ0(ε, q|ε0) of
stationary points with energy ε that are at fixed distance
from σ0, measured by one minus the overlap σ0 · σ = q
(high overlap corresponds to small distance). Since sad-
dles above εth are not the ones used by activated dynam-
ics, we restrict ε to the same range as ε0. Nσ0(ε, q|ε0)
is a random variable, and we are interested in its typi-
cal value whose logarithm is given by the quenched con-
strained complexity:

Σ(ε, q|ε0) = lim
N→∞

1
N

〈log Nσ0(ε, q|ε0)〉0, (2)

where the average is taken over the disorder and the lo-
cal minima of energy ε0. Its annealed counterpart given by
log〈Nσ0〉0 can be used as an approximation and is accessi-
ble to rigorous treatments, but it coincides with Σ(ε, q|ε0)
in a few cases only [17,19], when the distribution of Nσ0

concentrates around its average. The calculation of the
quenched complexity follows the method developed re-
cently in [24]; we report below the results and we refer to
the Supplemental Material Supplementarymaterial.pdf
(SM) for their detailed computation and extensions. The
quenched complexity reads

Σ(ε, q|ε0) =
1
2

log
(p

2
(z̃ − ε)2

)
+

p
(
ε2 + εz̃

)
2(p − 1)

+
Q

2
, (3)

where

Q = log
(

1 − q2

1 − q2p−2

)
− 2

(
ε20U0(q) + ε0εU(q) + ε2U1(q)

)
,

with z̃ =
√

ε2 − ε2th and

U0(q) =
q2p(−q2p + p(q2 − q4) + q4)

q4p − ((p − 1)2(1 + q4) − 2(p − 2)pq2)q2p + q4 ,

U(q) =
2q3p(p(q2 − 1) + 1) − 2qp+4

q4p − ((p − 1)2(1 + q4) − 2(p − 2)pq2)q2p + q4 ,

U1(q) =
q4 − q2p(p((p − 1)q4 + (3 − 2p)q2 + p − 2) + 1)
q4p − ((p − 1)2(1 + q4) − 2(p − 2)pq2)q2p + q4 .

1In [12] the authors compute the number of critical points of
the TAP free energy of the spherical p-spin model lying at fixed
overlap with a given minimum of the free energy; at variance with
our calculation, however, their computation is performed within the
annealed approximation, and without analysing the structure of the
Hessian of the critical points.

2Stationary points of (1) with intensive energy ε are also station-
ary points of the rescaled field with h[σ] =

√
2Nε.

3Both the gradient vector g[σ] and the Hessian H[σ] are defined
taking into account the spherical constraint: g[σ] is an (N − 1)-
dimensional vector which lies on the tangent plane to the sphere at
the point σ. Similarly, H[σ] is an (N − 1) × (N − 1) matrix whose
matrix elements are given in an arbitrary basis spanning the tangent
plane (see the SM for a more precise definition).
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Fig. 1: Energy densities εx(q|ε0) of the stationary points at
overlap q from the fixed minimum and having complexity
Σ = x, for p = 3 and ε0 = −1.167 > −1.172 = εgs. The green
points correspond to minima and the violet points to index-one
saddles. The evolution of the density of states of the Hessian
is sketched below. Above the threshold energy εth = −1.1547
all points are therefore saddles of index proportional to N .

For q = 0, one finds U0 = U = 0, U1 = 1, and Q = −2ε2

and we recover the expression of the unconstrained com-
plexity Σ(ε) [11], which counts the typical number of sta-
tionary points irrespectively of their location in the space
of configurations.

The expression (3) for the constrained quenched com-
plexity turns out to be equal to the one of the annealed
constrained complexity. This is quite surprising since the
presence of the constraint was expected to lead to non-
trivial correlations between critical points, and hence to a
difference between quenched and annealed averages. It is
a fortunate coincidence though, since it simplifies consid-
erably the analysis of the Hessian, and it suggests that a
mathematically rigorous proof of (3) along the lines of [19]
should be at reach and, moreover, it justifies a posteriori
the annealed approximation of [12].

We now focus on the properties of the Hessian of the
critical points. Depending on the values of q, ε and ε0, we
find that as long as ε < εth the points counted by (3)
are either minima or saddles with one unstable direc-
tion. More precisely the matrices H[σ] are distributed as
(N−1)×(N−1) GOE matrices with variance σ2 = p(p−1),
shifted by a diagonal matrix with entries equal to

√
2Npε

and perturbed by rank-one matrices that depend on q, ε
and ε0. The corresponding bulk eigenvalues density is
therefore a shifted semicircle law with a positive support
whose lower edge touches zero for ε → ε−

th. Interestingly,
the rank-one perturbation can push an isolated eigenvalue
out from the semicircle for certain values of parameters
(see fig. 1) [50,51]. When this happens, the expression of
the isolated eigenvalue reads

λ0(q, ε, ε0) =
μ(1 − Δ2

2σ2 ) + Δ2

σ

√
μ2

4σ2 − (1 − Δ2

σ2 )

(1 − Δ2/σ2)
−

√
2pε,

(4)

Fig. 2: Complexity of transition states as a function of q and ε
for p = 3 and ε0 = −1.158. Note that in this case εM < εth.

where the expressions of μ(q, ε, ε0) and Δ2(q) are given in
the SM. Its corresponding eigenvector has a finite projec-
tion on the direction that points toward σ0. Points for
which λ0 < 0 are saddles having one unstable direction
connecting σ with σ0. Hence, they correspond to possi-
ble “mountain-passes” to escape from σ0, which we refer
to as transition states. In fig. 1 we show iso-complexity
energy curves εx(q|ε0) defined by Σ(εx, q|ε0) = x for fixed
ε0: εx(q|ε0) is the energy of typical stationary points with
overlap with the reference minimum equal to q and com-
plexity equal to x. The curves shows that at high q the
energy landscape is convex. Critical points other than
σ0 only appear beyond a minimal distance from σ0, i.e.,
q ≤ qM . The closest ones at qM have an energy εM that,
depending on ε0, is either the threshold energy or it is
slightly below it (see fig. 3). They are transition states. In-
creasing the distance to σ0, the isolated eigenvalue grows
until it becomes positive, and critical points become min-
ima. On the iso-complexity curves this happens when
εx(q|ε0) reaches a local minimum (change from purple to
green in fig. 1). We do not have any intuitive explana-
tion of this intriguing coincidence, but we recall that the
non-monotonic dependence of εx(q|ε0) was already noted
in [37] for x = 0. At even larger distances, the isolated
eigenvalue enters into the semi-circle. Eventually, at q = 0,
we recover the unconstrained complexity result. Among
the different curves in fig. 1, the lowest one corresponding
to x = 0 is of particular interest since it gives the typical
energy of the deepest stationary points found at overlap
q with σ0. Its local minimum at high overlap, which we
denote by (q∗, ε∗), gives the lowest energy barrier ε∗ − ε0
that can be used to escape from σ0.

From this analysis at fixed ε0, two relevant information
on the landscape can be deduced: i) there exists a minimal
energy barrier that the system has to cross dynamically to
exit from the minimum σ0. This optimal barrier, which
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Fig. 3: Energy εM of the closest transition states at overlap
qM , and energy ε∗ of the minimal-energy ones, as a function of
ε0 ∈ [εgs, εth]. For −1.16421 ≤ ε0 ≤ εth, the closest transition
states have energy that is below the threshold (black dotted
line). Inset: latitudes qM (ε0) of the closest transition states
and latitude q∗(ε0) of the ones of minimal energy.

is generically lower than εth − ε0, is the one relevant for
activated dynamics at very low temperature4; ii) there is
an exponential number of transition states corresponding
to higher-energy barriers. These are relevant for slow dy-
namics at finite temperature, where higher but more nu-
merous barriers are favored [1]. Their organization and
their complexity is shown in fig. 2. At high q, transition
states have high energies and low complexity. Note that
at the considered ε0, we have εM < εth. The spectrum
of possible energies is maximal at the q = q∗ correspond-
ing to the optimal barriers. It then shrinks to zero at low
q, in correspondence to the highest and most numerous
transition states.

This scenario depends on ε0 in the following way. The
energy of the optimal transition states, ε∗(ε0), remains al-
ways below the threshold, and converges to it only when
ε0 → ε−

th, see fig. 3. A plot of the dependence of the
optimal barrier ε∗(ε0) − ε0 is given in the SM. A compar-
ison with [17,37] shows that the energy of these states,
despite being below the threshold, is nevertheless much
higher than the energy of generic index-one saddles with
the same complexity as the minima of energy ε0 (see SM
for details). This fact points toward a complex geometri-
cal organization of the critical points in phase space. As
shown in fig. 3, the energy εM of the closest transition
states at qM also tends to εth when ε0 → ε−

th, however it
shows a non-monotonic dependence on ε0 (see footnote 5).
In summary, the spectrum of available transition states
is larger for smaller ε0 and shrinks when approaching the

4Note that, as also discussed in the conclusion, the optimal bar-
rier is the first one that is crossed by activated dynamics at low
temperature. However, it is not necessarily the one that enables a
full escape. This depends on the subsequent barriers to which it is
connected to. If these are too high, then it could be more conve-
nient for the system to come back to the minimum and follow an
alternative path.

5Note that even in the cases when εM < εth one can find barriers
with energies up to εth, by focusing on small enough overlaps.

Fig. 4: Comparison between the energy density εx=0 of the crit-
ical points with Σ = 0, and the zero-temperature FP potential
εFP, for p = 3 and ε0 = −1.1682.

threshold, where marginal stationary points are expected
to be immediately surrounded by other marginal station-
ary points [12]. This is confirmed in the inset of fig. 3,
where the overlap of the closest states, qM (ε0), as well
as the overlap of the optimal ones q∗(ε0), are shown to
approach one when ε0 reaches εth.

The curve εx=0(q|ε0), which measures the deepest sta-
tionary points at overlap q from σ0, shares similarities
with the so-called Franz-Parisi (FP) potential [52]. Since
we are focusing on the energy landscape, and not the free-
energy one, the suitable Franz-Parisi potential to compare
with is the one at zero temperature: the minimal energy
of configurations at overlap q from σ0. We compute it
in the SM using standard replica techniques [52] and we
compare it to εx=0(q|ε0) in fig. 4. Since critical points are
a subset of all configurations at fixed q, the FP potential
must be generically lower than or equal to εx=0(q|ε0). As
shown in fig. 4, we find i) that the two functions are equal
only at q = 0 and at the local maximum of the FP poten-
tial, for which the associated critical points are actually
minima (see fig. 1), and ii) that the FP potential is well
below εx=0(q|ε0) at q = q∗. These results show that the
FP potential is not directly related to the barriers to es-
cape from σ0 (see footnote 6). In order to detect them,
generalized three-replica potentials were introduced and
studied dynamically [31–33]. On the basis of our results,
we expect that even those constructions are not able to
capture optimal transition states (as suggested compar-
ing their typical overlaps7). The physical reason is that
within the three-replica potential formalism the optimal
transition states are atypical and in order to probe them

6The only information that one can gain from the FP potential
is that its local maximum provides a lower bound to the height
of the optimal barrier encountered by the system during thermal
relaxation, i.e., when the system eventually decorrelates reaching
zero overlap with the initial configuration [39,40].

7In our case, in which the annealed approximation holds, the mu-
tual overlap between optimal barriers is simply given by the square
of the overlap q between the minimum and the optimal barriers. For
the three replica potential, where the annealed approximation does
not hold, it is instead a more complicated function.
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one has to combine it with large deviations techniques as
shown in [53].

In conclusion, we have worked out the complex organi-
zation of the transition states available to escape from a
given minimum in the p-spin spherical model, obtaining
a scenario that is expected to hold generically for mean-
field disordered systems displaying a glass transition. Our
results suggest several other important directions to inves-
tigate further. First, it would be important to generalize
our computation to locate all the index-one saddles con-
nected to the reference minimum, not only when they are
typical (as analyzed here) but also when they are subdom-
inant (rare) in comparison with other critical points. Sec-
ond, it is interesting to know the properties of the minima
(other than the original one) to which the saddles we have
identified are connected to. This would give additional in-
formation on activated dynamical paths, that are formed
by a sequence of jumps through optimal transition states
and subsequent minima. For instance we have found that
the optimal transition state to escape a given minimum
is placed at an energy that is smaller than the threshold
energy. The next important issue to address is finding
out whether the lowest optimal transition state encoun-
tered through activated paths leading to thermal relax-
ation (i.e., connecting minima at zero overlap) is also lower
than the threshold. In this context one important ques-
tion is whether an effective description in terms of trap-like
dynamics emerges at long times, as discussed for real sys-
tems [5] and found for the random energy model [44–48].
The extension of our work to finite temperature, that ne-
cessitates to consider the free-energy landscape, is another
interesting direction.

Working out the dynamical theory of activated pro-
cesses in mean-field glassy systems is arguably one of
the most important and challenging problem in glass
physics. The generalization of the instantonic solutions
of the Martin-Siggia-Rose field theory found in [49,54,55]
combined with the knowledge gained in this work on the
structure and the organization of energy barriers in con-
figuration space provide a promising starting point for this
enterprise.
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