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We compute the typical number of equilibria of the generalized Lotka-Volterra equations describing
species-rich ecosystems with random, nonreciprocal interactions using the replicated Kac-Rice method. We
characterize the multiple-equilibria phase by determining the average abundance and similarity between
equilibria as a function of their diversity (i.e., of the number of coexisting species) and of the variability of
the interactions. We show that linearly unstable equilibria are dominant, and that the typical number of
equilibria differs with respect to the average number.
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Systems of many degrees of freedom with heterogeneous
and nonreciprocal (asymmetric) interactions emerge nat-
urally when modeling neural networks [1–8], natural
ecosystems [9–12], economic networks, or agents playing
games [13–16]. The dynamics of these systems are char-
acterized by a large number of attractors such as equilibria,
limit cycles, and chaotic attractors. Systems admitting an
energy landscape, as it is the case for symmetric inter-
actions, only display equilibria, which are the stationary
points of the landscape. A rugged landscape is central in the
theory of glassy systems, since local minima are associated
with metastable states; as a consequence, in-depth inves-
tigations and refined tools for counting and classifying
local minima of highly nonconvex landscapes have been
developed extensively in the context of glassy physics
[17–20]. Most of these studies focused on systems admit-
ting an energy landscape, though. Recently, the interest in
nonconservative systems (devoid of an energy landscape)
has grown substantially and pioneering works have shown
that such systems can also display many equilibria [21–25].
Developing a general theory in order to count them and to
investigate their stability is a challenging goal, with
potentially relevant implications for understanding the
dynamics.
Here we address this problem for a prototypical non-

conservative dynamical system, the random generalized
Lotka-Volterra model (RGLV) that describes the dynamics
of population sizes of multiple species with pairwise
interactions between them. The RGLV equations are used
extensively in theoretical ecology to describe well-mixed

ecosystems [26–31], and they are related to models used in
evolutionary game theory and in economic theory [32–35].
They are known to admit a multiple equilibria phase when
the variability of the random interactions is strong enough
[27,36–38]; an interesting feature for theoretical ecology
[39,40]. Our main result is a full characterization of
multiple equilibria in terms of average abundance, diver-
sity, and stability as summarized in the phase portrait of
Fig. 1. There is a general expectation that the vast majority
(if not all) of the equilibria are linearly unstable when the
interactions are asymmetric [24,41]; our analysis confirms
this surmise, which directly implies a complex dynamical

FIG. 1. Quenched complexity Σðϕ; σÞ of uninvadable equilibria
for uncorrelated interactions (γ ¼ 0). Black lines correspond to
vanishing complexity; the green dotted line to the diversity
ϕMayðσÞ above which equilibria are linearly unstable (red area);
the orange dotted line to the transition between the unique
(σ < σc) and the multiple (σ > σc) equilibria phases.
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behavior, as the system can never settle in a fixed point,
even at long times. In order to properly count the typical
number of equilibria, we combine random matrix theory
with standard tools in the theory of glasses. We thus go
beyond the previous analysis performed for systems with
asymmetric interactions [21–24,42], which focused on the
average number of equilibria. The latter is in fact much
larger than the former and not representative of the typical
behavior of the RGLV model, as we shall show below (and
as it happens in many other disordered and glassy systems).
The RGLV equations determine the dynamics of a pool

of S ≫ 1 species. They read

dNiðtÞ
dt

¼ NiðtÞFiðN⃗Þ; ð1Þ

where NiðtÞ ≥ 0 is the abundance of species i at time t.
The vector F⃗ represents the growth rates or forces:

FiðN⃗Þ ¼ κi − Ni −
μ

S

XS
j¼1

Nj −
σffiffiffi
S

p
XS
j¼1

aijNj: ð2Þ

Here κi are the carrying capacities, μ, σ are the average
interaction strength and the variability, and aij are compo-
nents of a random matrix encoding the fluctuations in the
interactions between the different species [43]. To describe
interactions where aij and aji are correlated but not exactly
the same, we take them as two variables with a joint
Gaussian distribution defined by covariances:

haijakli ¼ δikδjl þ γδilδjk; jγj ≤ 1 ð3Þ

corresponding to ha2iji ¼ ha2jii ¼ 1 and haijajii ¼ γ. In the
extreme case γ ¼ �1 one obtains perfect correlations
aij ¼ �aji, while for γ ¼ 0 the interactions are uncorre-
lated. We focus on κi ¼ κ, but the calculation can be easily
generalized to heterogeneous κi.
Equilibria are configurations N⃗� satisfying

dN�
i

dt
¼ N�

i FiðN⃗�Þ ¼ 0 ∀ i; N�
i ≥ 0: ð4Þ

Numerical simulations and analytical results
[27,30,36,41,44,45] reveal two distinct regimes for large
S: a unique equilibrium regime in which any arbitrary
initialization of the population vector converges to a fixed
equilibrium N⃗� which is globally stable, and a multiple
equilibria regime. The transition between the two regimes
takes place at σc ¼

ffiffiffi
2

p ð1þ γÞ−1 [44]. Characterizing the
multiple equilibria phase when −1 < γ < 1 is still an open
challenge as mappings to physical systems work only for
γ ¼ 1 [27,33,36,38,46,47] and γ ¼ −1 [48]. In the former
case the problem is conservative and the force is obtained
as the derivative of an energy, FiðN⃗Þ ¼ −∂iLðN⃗Þ with

LðN⃗Þ¼P
S
i¼1Ni½ðNi=2Þ−κiþðμ=2ÞPS

j¼1Njþðσ=2 ffiffiffi
S

p Þ×P
S
j¼1aijNj�. Stable equilibria are identified with metasta-

ble states (local minima of the energy). Spin-glass tech-
niques [36,38] can be used to show that there exist
exponentially many (in S) metastable states, the relevant
ones being marginally stable, which makes the system
critical [49] and hence very fragile to nonconservative
perturbations [41,50–52]. This formalism requires the
existence of an energy landscape. When −1 < γ < 1,
dynamical mean field theory [45] has provided information
on the dynamics but not directly on the equilibria. Here we
tackle this challenge by the Kac-Rice formalism [53–56].
To study the typical number of equilibria for γ ≠ 1we make
use of the so-called quenched Kac-Rice formalism intro-
duced in [57].
There are many equilibria solving (4), that differ by

which species are present. We classify their typical number
as a function of their diversity: each equilibrium N⃗� has a
certain number of absent species (N�

i ¼ 0), and a number
sðN⃗�Þ of present species (N�

i > 0). The diversity is defined
as ϕðN⃗�Þ ¼ sðN⃗�Þ=S ∈ ½0; 1�. This quantity is a central
property in ecology, which also sets the stability of the
equilibria [58], as we recall below. Our counting of
equilibria at varying ϕ is also motivated by the fact that
it is not known a priori which equilibria will affect the
systems dynamics (and how), at variance with equilibrium
frameworks where the relevant equilibria are marginally
stable minima, usually the more numerous ones (see,
however, [59]). Therefore, determining the range of diver-
sities where equilibria are present is crucial. We focus on
uninvadable equilibria, such that FiðN⃗�Þ < 0 for any i such
that N�

i ¼ 0 (notice that similar constraints appear naturally
in constraint satisfaction problems, too [60]). These equi-
libria are relevant as they are stable with respect to small
positive fluctuations in the abundance of the absent species.
The total number N SðϕÞ of uninvadable equilibria with
diversity ϕ scales exponentially with S [61]. As known
from glassy physics, N SðϕÞ is a random variable which in
general does not concentrate around its average (it is not
self-averaging). In this case, the typical number is obtained
by focusing on the large-S limit of its logarithm, which
does concentrate around a deterministic value ΣðϕÞ:

lim
S→∞

log½N SðϕÞ�
S

¼ lim
S→∞

hlog½N SðϕÞ�i
S

≡ ΣðϕÞ: ð5Þ

ΣðϕÞ governs the exponential scaling of the typical value of
N SðϕÞ: borrowing the terminology from glassy physics,
we refer to it as the quenched complexity. The computation
of the average of the logarithm is done via the replica trick:

hlogN SðϕÞi ¼ lim
n→0

loghN n
SðϕÞi
n

: ð6Þ
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When evaluated at n ¼ 1 the right-hand of side of Eq. (6)
gives the annealed complexity associated with the
average number of equilibria [24,62–64]: ΣðAÞðϕÞ≡
limS→∞ð1=SÞ loghN SðϕÞi. When N SðϕÞ is not self aver-
aging, ΣðAÞ > Σ: the average of N SðϕÞ is dominated by
exponentially rare ecosystems displaying an unusually
large number of equilibria. It is therefore much larger than
the typical value, which captures the properties of the
ecosystems occurring with probability that is not sup-
pressed exponentially in S.
The main steps of the replicated Kac-Rice computation

are explained in the Supplemental Material [65]. The value
of hN n

SðϕÞi can be determined by introducing n copies of
the ecosystem and by finding the probability that any n
given vectors N⃗a, a ¼ 1;…; n satisfy Eq. (4) simultane-
ously, together with the uninvadability condition. This is a
function of order parameters measuring properties of the
equilibria, like the amount of correlation between them.
The number of equilibria is dominated (according to a large
deviation principle) by specific values of these order
parameters. The order parameters are the first two empirical
moments of the vectors N⃗a and F⃗a, i.e., the 2n quantities:

ma ≡ lim
S→∞

P
S
i¼1 N

a
i

S
; pa ≡ lim

S→∞

P
S
i¼1 F

a
i

S
; ð7Þ

as well as the nðnþ 1Þ þ nðn − 1Þ correlations (or over-
laps):

qab≡ lim
S→∞

N⃗a ·N⃗b

S
; ξab≡ lim

S→∞

F⃗a · F⃗b

S
; zab≡ lim

S→∞

N⃗a · F⃗b

S
;

ð8Þ

where zaa ¼ 0 follows from (4). These order parameters
encode the correlations in the location of the different fixed
points in configuration space, which emerge because all the
fixed points arise from the same interactions between the
species. We consider a symmetric ansatz for the order para-
meters, i.e., ma ¼ m, qab ¼ δabq1 þ ð1 − δabÞq0, pa ¼ p,
ξab ¼ δabξ1 þ ð1 − δabÞξ0zab ¼ ð1 − δabÞz, which is the
simplest approximation that takes such correlations into
account. Under this assumption, the moments can be
written as an integral over all possible values of the order
parameters:

hN n
SðϕÞi ¼

Z
dx eSnĀðx;ϕÞþoðnSÞ; ð9Þ

with x ¼ ðm;p; q1; q0; ξ1; ξ0; zÞ, see the Supplemental
Material [65] for details of the calculation of Ā and for
its explicit expression. The large deviation principle then
implies that asymptotically

ΣðϕÞ ¼ Āðx⋆;ϕÞ; ð10Þ

where x⋆ is the solution of the saddle-point equations
½δĀðx;ϕÞ=δx�jx⋆ ¼ 0. This results in self-consistent equa-
tions for the typical properties of equilibria at fixed ϕ, such
as their typical average abundance m� or the typical
similarity between two equilibria q�0.
The Kac-Rice computation allows us to determine the

linear stability of the equilibria at each given ϕ with respect
to perturbations N�

i → N�
i þ δN�

i of the populations of
coexisting species. This depends on the spectral properties
of the matrix:

HijðN⃗�Þ ¼
�
∂FiðN⃗�Þ
dNj

�
i;j∶N�

i ;N
�
j>0

: ð11Þ

For stable equilibria all the eigenvalues of (11) have
negative real part. The asymmetry of the matrix aij implies
that (11) are themselves asymmetric random matrices [66].
The typical eigenvalue density (neglecting possible isolated
eigenvalues) of Hij depends on N⃗� only through its diver-
sity ϕ. For

ϕ < ϕMay ¼
1

σ2ð1þ γÞ2 ð12Þ

the density has support on the negative real sector; therefore
a typical equilibrium with ϕ < ϕMay (if it exists) is stable.
At ϕ ¼ ϕMay, the support of the eigenvalue density touches
zero and the corresponding equilibrium is marginally
stable; for larger ϕ the equilibrium is unstable. The criterion
(12) for linear stability is related to that identified byMay in
[58], and we henceforth refer to it as the May stability
bound. More details on the Kac-Rice computation, with a
thorough discussion of the structure of the equations and
their resolution, are given in [67].
We now present our main results, focusing on the case of

uncorrelated interactions γ ¼ 0 and setting κ ¼ 1. We find
that although the saddle point values x� depend explicitly
on μ, the complexity at fixed diversity does not, allowing us
to discuss the behavior of ΣðϕÞ as a function of σ only. As
shown in Fig. 1, when σ > σc there is a range of diversities
ϕ ∈ ½ϕaðσÞ;ϕbðσÞ� for which ΣðϕÞ > 0 [a negative anne-
aled ΣðϕÞ signifies that no equilibria exist typically [56]].
The RGLV equations thus admit an exponentially large
number of uninvadable equilibria with a continuous dis-
tribution of diversities. All the equilibria are unstable, as
their diversity exceeds the May stability bound, Eq. (12). In
Fig. 2 we show a cut at fixed σ of the plot of Fig. 1. In
addition to the quenched complexity we show the annealed
one for comparison. We find that the complexity and the
diversity ϕmax associated to the typical, i.e., most numerous
equilibria at the given σ are overestimated by the annealed
calculation. Annealed and quenched complexity only
coincide for small ϕ. The point ϕcav where they begin to
deviate from one another turns out to coincide with the

PHYSICAL REVIEW LETTERS 130, 257401 (2023)

257401-3



value of diversity predicted by the cavity method discussed
in Refs. [27,30,41]. The cavity method assumes the
existence of a unique stable equilibrium and allows one
to characterize its abundance m and overlap q1, by
imposing consistency relations between the properties of
the system with Sþ 1 and S species. The above result
shows that despite being only approximate for σ > σc, this
method still captures the properties of a given family of
equilibria, even though they are exponentially rare with
respect to the typical ones at ϕmax.
We have studied how the properties of equilibria change

as ϕ is increased. Figure 3 shows that imposing a larger

diversity leads to less populated (lower average abundance
m�) equilibria. Similarly, it leads to less correlated (lower
overlap q�0) equilibria. Figure 4 shows the σ dependence of
the special values of ϕ discussed above (it corresponds to
Fig. 1 seen from the top). The gray area is the support of the
quenched complexity, which increases with σ. When
σ → σþc all the special values of ϕ merge together and
reach ϕMay. Correspondingly, the complexity vanishes.
Just above σc, where the complexity goes to zero, the

quenched and annealed calculations have great discrepan-
cies, see the inset of Fig. 4, probably due to the larger
correlation between equilibria. In fact, the average number
of equilibria (annealed calculation) is dominated by equi-
libria having a diversity ϕann

max for which typically there are
no equilibria, i.e., the quenched complexity vanishes. This
feature had already been identified in Ref. [35] for a slightly
different model arising in the context of portfolio optimi-
zation (and describing, in its ecological interpretation,
species competing for a single common resource).
For larger σ the cavity approximation underestimates

more strongly the diversity (and thus the instability) with
respect to that of typical equilibria at ϕmax. For σ < σc, the
complexity (annealed and quenched) is non-negative only
at ϕ ¼ ϕcav, which now correctly describes the diversity of
the system as there is a unique equilibrium [68]. The
analysis of the multiple equilibria also allows us to
characterize thoroughly the transition to an additional
phase, the unbounded phase, where some abundances
diverge as a function of time; see the Supplemental
Material [65].
Finally, let us focus on the properties of the transition to

the unique equilibrium phase at σc. Following the termi-
nology introduced in [23], this is a trivialization transition
and corresponds to the point at which the total quenched
complexity Σtot ¼ ΣðϕMaxÞ first vanishes. The way in

FIG. 2. Complexity of equilibria as a function of their diversity,
for γ ¼ 0. Main panel: Complexity in the multiple equilibria
phase (at σ ¼ 4). A difference between quenched (magenta) and
annealed (blue) is apparent. All the equilibria are unstable
(ϕ > ϕMay). Inset: Annealed complexity in the unique equilib-
rium phase (at σ ¼ 1), negative except at the diversity predicted
by the cavity formalism consistent with the existence of a unique
equilibrium.

FIG. 3. Typical averaged population size as a function of
diversity ϕ for σ ¼ 4 and μ ¼ 30, in the annealed (blue) and
quenched (magenta) calculation. More diverse equilibria have a
smaller averaged population size m, which for ϕ > ϕcav is
underestimated by the annealed approximation. The inset is a
enlarged plot.

FIG. 4. Diversity vs variability diagram. The range of possible
diversities is indicated by the gray region. Curves of maximal
complexity are shown in magenta (quenched) and blue
(annealed). The black squares give ϕcav. The orange dashed line
corresponds to ϕMay above which all equilibria are linearly

unstable. Inset: Enlargement in the vicinity of σc ¼
ffiffiffi
2

p
.
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which Σtot vanishes for σ → σc has been the focus of
several works. It has been studied in models with a
quadratic single-species confinement potential within an
annealed calculation [69,70]. Importantly, it has also been
conjectured to be connected to the emergence of chaos and
of a finite Lyapunov exponent [63]. For the RGLV model at
γ ¼ 0 we find that the complexity grows quadratically
with σ when entering the multiple equilibria phase, Σtot ∼
ðσ − σcÞ2 as in [69,70]. As found in models of recurrent
neural networks, the emergence of a nonzero complexity is
concomitant with the emergence of a complex dynamical
behavior, including chaos and aging [45]. We notice that
the annealed approximation locates correctly the triviali-
zation transition in this case, and also captures the quadratic
increase but with a different prefactor. We do not expect this
quadratic behavior to be general, unless the total complex-
ity in the vicinity of σc is captured by the annealed
framework. If this is not the case, our calculation suggests
that one should find a different power law for γ ≠ 0 (see
Ref. [67] and the Supplemental Material [65] for more
details).
In summary, we have characterized the multiple-

equilibria phase of the RGLV equations by computing
explicitly the complexity of uninvadable equilibria. On a
technical ground our approach, giving access to the
quenched complexity, has allowed us to assess when and
to what degree the annealed calculation is precise: we have
found a transition at the value of diversity ϕcav, below
which the annealed calculation is exact and above which
the quenched calculation gives a quantitatively different
result; the latter regime always includes the maximum of
the complexity, which corresponds to the typical equilibria.
We performed the calculation assuming a symmetry of

the order parameters with respect to permutations of
replicas: we are thus restricting the region of parameter
space where to look for solutions of the self-consistent
equations obtained from the variation of (10). For γ ¼ 1 it is
know that the symmetric assumption is an approximation,
as (10) is optimized by parameters that break the symmetry
between the replicas. Verifying that replica symmetry
breaking is not needed for generic γ is a challenge that
we leave for further studies.
Our calculations show that for nonreciprocal uncorre-

lated interactions all the uninvadable equilibria are linearly
unstable. This marks a difference with respect to the
symmetric case, where marginally stable equilibria are
present and correspondingly the dynamics is glassy. With
unstable equilibria, a chaotic dynamics is expected in the
presence of migration [6] and signatures of it emerge in
theoretical models [71] and even in controlled experiments
[72]. Similarly to the case of landscape studies, which were
instrumental to understand glassy dynamics in terms of
local minima and metastable states, it would be very
interesting to connect the properties of these unstable
equilibria (more generally, of heteroclinic networks formed

by them [73]) to the dynamical behavior. We envisage that
invadable equilibria also play a role in the dynamics [74],
and the calculation of their complexity is ongoing, as well
as the generalization to inhomogeneous carrying capacities
κi [69,75,76].
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