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Abstract
We consider the generalized Lotka–Volterra system of equations with all-to-
all, random asymmetric interactions describing high-dimensional, very diverse
and well-mixed ecosystems. We analyse the multiple equilibria phase of the
model and compute its quenched complexity, i.e. the expected value of the
logarithm of the number of equilibria of the dynamical equations. We discuss
the resulting distribution of equilibria as a function of their diversity, stability
and average abundance. We obtain the quenched complexity by means of the
replicated Kac–Rice formalism, and compare the results with the same quant-
ity obtained within the annealed approximation, as well as with the results of
the cavity calculation and, in the limit of symmetric interactions, of standard
methods to compute the complexity developed in the context of glasses.
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1. Introduction

When modelling complex systems in biology, ecology or economics one is typically forced
to give up the framework of conservative systems, and more generally of physical systems
that are isolated or in contact with a heat bath; indeed, the interactions in these systems are
often directional and asymmetric, and thus the dynamical equations describing the evolution
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of species, agents or individual constituents do not take a gradient form. In these types of
problems, the asymmetry is a distinctive feature which adds to the other standard ingredients
in complex systems modelling, such as the high-dimensionality and randomness.

Some of the interesting phenomenology of conservative, high-dimensional systems with
random interactions persists in presence of asymmetry; for instance, the competition between
random and deterministic contributions tends to generate transitions between complex and
simple phases. In conservative systems, these transitions can be understood in terms of the
structure of the high-dimensional energy landscapes associated to the system: they separate
regimes in which the landscape is very non-convex and rugged (as the energy landscape of
toy models of glasses [1, 2]) from regimes in which the landscape has a much smoother
or even convex shape. They are referred to as topology trivialization transitions [3–6]. In
non-conservative systems this landscape interpretation cannot be invoked. Nevertheless, these
transitions still have a meaning in terms of the dynamical equations associated to the sys-
tem: complex phases are characterized by the presence of plenty of equilibria (fixed points or,
more generally, dynamical attractors) with different stability properties, while simple phases
are characterized by few, in some cases a single one, of these equilibria [7–10]. When the
dimensionality is high, in the complex phase the number of equilibria can diverge exponen-
tially with the dimensionality. The interest lies in characterizing this complexity quantitatively,
i.e. in estimating the number of equilibria and in classifying them in terms of their dynamical
stability or other relevant properties [11–13].

Despite the analogy with glasses, for which these questions have been tackled extensively
in the last decades, getting a quantitative understanding of the complex, multiple-equilibria
phases in non-conservative systems is in general a harder task. One of the reasons for this is that
several of the tools developed in the context of glasses are precluded, as they rely on variations
of equilibrium-like calculations [14, 15] and are therefore specifically conceived for systems
associated to energy and free energy landscapes. Alternative approaches not relying explicitly
on the landscape formulation have also been developed in the theoretical literature on glasses
[16]. They essentially make use of the so called Kac–Rice formalism, that has been revisited
and developed extensively in the recent years (see [17] for a review); in particular, it has been
pointed out that the counting problem for random systems can essentially be formulated as a
problem of random matrix theory. This observation is at the root of most of the more recent
developments in the field, and it also opened the door to a mathematically rigorous formulation
of the problem. Complex phases and trivialization transitions in non-gradient systems have
been studied within the Kac–Rice formalism in [18–24].

These recent works, however, address the problem within the so called annealed approx-
imation, which allows one to determine the asymptotics (in the system’s dimension) of the
average number of equilibria of the dynamical equations. In high-dimension, however, the
number of equilibria in the complex phase is in general a broadly distributed random vari-
able, whose average is dominated by realizations of the random interactions occurring with
extremely small probability. In this setting, the interest lies in characterizing the typical value
of the number of equilibria, rather than its average. This problem, which is well known in the
theory of glasses as it applies there to the random partition function of the system, requires
to go beyond the annealed setting and to perform quenched calculations. The replica trick,
which entails that typical values can be extracted from the calculation of the higher moments,
is the well-known tool to address this problem. In this work, we embed the replica trick into the
Kac–Rice formalism to perform a quenched calculation of the number of equilibria. We follow
the approach introduced in [25], applying it here to a non-conservative dynamical system.

We focus on the generalized Lotka–Volterra system of equations with all-to-all, ran-
dom asymmetric interactions. These equations have been used quite extensively recently
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in their high-dimensional setting to model diverse, well-mixed ecosystems such as bac-
terial ecosystems [26]. We consider asymmetric pairwise random interaction couplings with
Gaussian statistics, and compute the typical number of equilibria of the system of equations as
a function of the parameters of themodel, as well as of the diversity (fraction on coexisting spe-
cies) of the equilibria. We show explicitly how the annealed calculation gives a non-tight upper
bound to the typical number of equilibria in the complex phase, and discuss also the connection
with other approaches discussed in the literature, based on the cavity formalism [27–29].

The work is structured as follows: in section 2 we introduce the model, we summarize
previous results and we discuss the difference between quenched and annealed calculations.
In section 3 we present the structure of the quenched calculation of the typical number of
equilibria, and derive the self-consistent equations defining the problem. In section 4 we focus
on the case of totally uncorrelated interactions and describe in detail the solution procedure
of the self-consistent equations. In section 5 we present our results for the uncorrelated case,
and in section 6 we discuss generalizations to correlated but asymmetric interactions. Finally,
in section 7 we present our conclusions. Further technical details on the calculations are given
in the appendices. This work presents a detailed account of the structure of the quenched
calculation: for a more concise summary of the results and their interpretation, we refer the
readers to [30].

2. The model and its multiple equilibria phase

We consider the generalized Lotka–Volterra equations describing the evolution of species in
well-mixed ecosystems, interacting pairwise with random couplings. We are interested in eco-
systems with a large number of species: we let i = 1, . . . ,S≫ 1 label the different species
belonging to a species pool. Ni(t)⩾ 0 denotes the abundance of species i at a given time t, and
N⃗(t) = (N1(t), . . . ,NS(t)) a configuration of the ecosystem. We neglect the discreteness of the
Ni, setting Ni ∈ [0,+∞). The generalized Lotka–Volterra equations describing the evolution
of a community read:

dNi(t)
dt

= Ni(t)

κi −Ni(t)−
S∑

j=1

αijNj(t)

 ∀ i, Ni(t)⩾ 0 (1)

where κi is the carrying capacity of the species i, and αij are components of a random matrix
encoding the interactions between the different species. We choose each αij to be a Gaussian
random variable with a statistics characterized by three parameters µ,σ,γ:

⟨αi j⟩=
µ

S
, ⟨αijαkl⟩c = ⟨αijαkl⟩− ⟨αij⟩⟨αkl⟩=

σ2

S
[δi kδjl+ γδilδjk], (2)

and denote withP({αij}ij) the joint distribution of these variables, and with ⟨·⟩ the average with

respect to it4. The parameter γ ∈ [−1,1] encodes the (a-)symmetry properties of the interaction
matrix, while µ,σ measure the average strength of the interactions, and their variability. We
set:

αij =
µ

S
+

σ√
S
aij, ⟨ai j⟩= 0, ⟨aijakl⟩= δi kδjl+ γδilδjk. (3)

4 In this formulation, the couplings αii are non-zero and have the same statistics as the αij with i ̸= j. We remark that
one may absorb these terms in the carrying capacities κi and work with αii = 0. These different choices do not affect
any result on the complexity derived in this work.
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We focus on the case in which carrying capacities are equal for all species, κi = κ, even though
the analysis can be easily generalized to the case of inhomogeneous carrying capacities. The
case of symmetric interactions γ= 1 has been discussed quite extensively in previous liter-
ature, both in the dense [28, 31, 32] and sparse [33] case. Here we are rather interested in
asymmetric interactions γ < 1; we focus in particular on the uncorrelated case γ= 0, when
the entries αij and αji are independent random variables.

For general γ, this system of equations has been studied analytically in the large-S limit by
means of the so called cavity method [28]. The cavity analysis and the numerical simulation of
the dynamics [34, 35] have revealed the existence of three distinct regimes: (i) a unique equi-
librium regime in which any arbitrary initializationNi(0) of the population vector converges to
a fixed equilibrium value N∗

i , (ii) a multiple equilibria regime in which the dynamics is attrac-
ted by a succession of different configurations, the ecosystem remaining in their vicinity for
some time before being pushed away along unstable directions in the species space, and (iii) an
unbounded regime, where the abundance of some species diverges as a function of time. The
system is driven from one regime to the others by tuning the variability σ, at fixed µ,γ, see [28]
for a phase diagram. For µ> 0 and γ ∈ (−1,1], the unique and multiple equilibria regimes are
separated by a sharp transition line at σc =

√
2(1+ γ)−1 [35]. The cavity approach captures

exactly the equilibrium of the system in the regime in which one single equilibrium exists,
but it is only approximate within the multiple equilibria regime. The latter has been studied in
more detail in the symmetric case γ= 1 [28, 31, 32, 36–38], where the model (1) can be treated
with standard methods of disordered systems applicable to conservative systems, i.e. systems
admitting a potential function. The totally antisymmetric case γ =−1 in absence of the niche-
like term (the term −Ni(t) in the right-hand side of equation (1)) has been looked at in [39].
Here we aim at characterizing the multiple equilibria regime away from γ =±1, by comput-
ing explicitly the number of equilibria of the dynamical equation (1) as a function of their
properties defined below.

2.1. Equilibria and their properties: diversity, abundance, stability

Equilibria are special configurations N⃗∗ satisfying:

dN∗
i

dt
= N∗

i Fi(N⃗
∗) = 0 N∗

i ⩾ 0 ∀ i, (4)

where we have introduced the vector F⃗ with components:

Fi(N⃗) = κ−Ni −
S∑

j=1

αijNj, (5)

which we refer to as ‘vector of forces’ in analogy with constraint satisfaction problems [40],
and whose ecological interpretation is the growth-rate in the configuration N⃗. When many
equilibria configurations are present, they can be classified according to their diversity, aver-
age abundance and stability. Each equilibrium configuration N⃗∗ is characterized by a certain
number of species that are absent, N∗

i = 0: the diversity ϕ measures the fraction of species
that coexist in the configuration. To define it, we let I(N⃗∗) = (i1, . . . , is) with 0⩽ s(N⃗∗)⩽ S be
an index set collecting the indices of the species that coexist in the given equilibrium N⃗∗, i.e.
N∗
i > 0 for i ∈ I and N∗

i = 0 for i /∈ I. We then set:

ϕ(N⃗∗) = lim
S→∞

|I(N⃗∗)|
S

= lim
S→∞

s(N⃗∗)

S
∈ [0,1] . (6)
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Each of the species that coexist in a given equilibrium contribute to its average abundance,
which we define through another intensive parameter m defined by:

m(N⃗∗) = lim
S→∞

1
S

S∑
i=1

N∗
i . (7)

We classify equilibria according to two different notions of dynamical stability; first, we con-
sider the stability with respect to the species that are absent (N∗

i = 0), and define the equilib-
rium uninvadable if it is stable with respect to the re-introduction of these species from the
species pool. This corresponds to the requirement that its growth-rate is negative if the species
are introduced in small numbers, i.e. Fi(N⃗∗)< 0 for any i /∈ I. In addition, we consider the
stability with respect to perturbations N∗

i → N∗
i + δN∗

i of the populations of the species that
coexist: the equilibrium is stable if the system initialized in N∗

i + δN∗
i is driven back to the

nearby equilibrium configuration N∗
i by the linearized version of the dynamics (1). This linear

stability is controlled [41] by the interaction matrix restricted to the subspace of coexisting
species,

Hij(N⃗
∗) =

(
δFi (N⃗∗)

dNj

)
i,j∈I(N⃗∗)

. (8)

The equilibrium is linearly stable if the eigenvalues of this matrix have all negative real part.
Notice that as it follows from the fact that the interaction couplings αij are random and asym-
metric, the matrices (8) are themselves asymmetric random matrices. As we shall show below,
all equilibria N∗ with a given diversity ϕ are associated with matrices (8) displaying the same
distribution of eigenvalues in the limit S→∞ (we discuss the role of subleading 1/S con-
tributions to the density of eigenvalues in section 3.3). In particular, the dominant part of the
eigenvalue distribution is supported on the negative real sector provided that the diversity does
not exceed a critical value given by:

ϕ < ϕMay =
1

σ2(1+ γ)2
. (9)

When ϕ = ϕMay, the support of the spectrum touches zero and the corresponding equilibrium
is marginally stable; for larger values of ϕ, the equilibrium is unstable. Not surprisingly, the
stability criterion (9) is related to that identified by R. May when studying the linear stability
of random ecosystems assumed to be in the vicinity of an equilibrium configuration [42]. We
henceforth refer to it as the May stability bound.

2.2. Counting equilibria: quenched and annealed complexity

Let NS(ϕ) denote the total number of uninvadable equilibria with fixed diversity ϕ. In the
unique equilibrium phase, NS(ϕ) is a self-averaging random variable which is expected to
be equal to one at the value of diversity corresponding to the equilibrium, and equal to zero
otherwise [30]. In the multiple equilibria phase, instead, NS(ϕ) is expected to scale exponen-
tially with S, in analogy with the number of stable configurations of complex systems such as
spin glasses [1]. The logarithm of NS(ϕ), or complexity, is self-averaging in the large S limit.
We therefore define the quenched complexity Σ(Q)

σ (ϕ) of equilibria from:

Σ(Q)
σ (ϕ) = lim

S→∞

1
S
⟨log [NS(ϕ)]⟩ , (10)

where the average is performedwith respect to the random interactionsαij at fixed values of the
parameters µ,σ,γ and κ (to simplify the notation, henceforth we neglect the dependence of all

6



J. Phys. A: Math. Theor. 56 (2023) 305003 V Ros et al

quantities on these parameters). The quenched complexity controls the exponential scaling of
the typical number of equilibria when S is large; in the multiple equilibria phase, it is different
from zero in a whole range of diversities ϕ. By convexity, it is bounded from above by the so
called annealed complexity:

Σ(A)
σ (ϕ) = lim

S→∞

1
S
log⟨NS(ϕ)⟩ , (11)

which controls the exponential scaling of the average number of equilibria. The latter quantity
is the one usually considered in the Kac–Rice literature [19]. It is easier to compute than the
quenched complexity, since it only requires to compute the asymptotic scaling of the average
value of the random variableNS(ϕ). In contrast, the calculation of the average of the logarithm
in (10) requires to determine the behaviour of arbitrarily high moments of NS(ϕ), from which
the logarithmic average can be obtained using the replica trick:

⟨logNS(ϕ)⟩= lim
n→0

log⟨Nn
S(ϕ)⟩
n

. (12)

In complex disordered systems, the quenched complexity is the relevant quantity to look at in
the limit of large S, as it characterizes the behaviour of the system for typical realizations of
the random couplings. The annealed complexity describes instead the average behaviour, and
may be dominated by rare instances of the randomness. As we show below, within the multiple
equilibria phase quenched and annealed complexity differ for most values of diversities, while
they coincide in the unique equilibrium phase.

3. Getting the quenched complexity: the replicated Kac–Rice calculation

The replicated Kac–Rice method provides us with a formula for the moments of the random
variable NS(ϕ) appearing in (12). More generally, Kac–Rice formulas are used to determine
the statistics (in most cases, the average) of the number of solutions of a random system of
equations. Let I denote an index set, collecting a fraction of the indices i = 1, . . . ,S. For the
system (4) at fixed realization of the random couplingsαij, the number of uninvadable solutions
having diversity ϕ can be formally written as:

NS(ϕ) =
∑

I:|I|=Sϕ

ˆ
dN⃗ d⃗f

∏
i∈I

θ(Ni)δ( fi)
∏
i /∈I

δ(Ni)θ(−fi)

∣∣∣∣∣det
(
δFi
dNj

)
i,j∈I

∣∣∣∣∣δ(F⃗(N⃗)− f⃗
)
. (13)

In this expression, the sum is over all possible choices of configurations N⃗ such that the spe-
cies i ∈ I are present; the delta functions enforce that whenever a species i /∈ I is absent, the
corresponding component of the force vector takes a negative value, implying uninvadibil-
ity; finally, the absolute value of the determinant accounts for the fact that the equilibrium
equation (4) are non-linear in the variables Ni, and thus may admit a multiplicity of solutions.
To introduce the formula for the n-th moment of this quantity, we need to introduce n different
configurations N⃗a for a= 1, · · ·n, which we refer to as replicas. Let N= (N⃗1, . . . , N⃗n) denote
the concatenation of configurations of all replicas. For each replica, let Ia = I(N⃗a) be the index
set collecting the indices of coexisting species, such that |Ia|= Sϕ for all a. We introduce the
vectors of forces F⃗a = F⃗(N⃗a) and F(N) = (F⃗1, . . . , F⃗n). Let f be the value taken by this random
vector, and P

(n)
N (f) the joint distribution of the S-dimensional vectors F⃗a evaluated at f⃗ a,

P
(n)
N (f) =

ˆ S∏
i,j=1

dαijP({αij}ij)δ (F(N)− f) . (14)
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We also introduce the following conditional expectation value:

D
(n)
N (f) =

〈 n∏
a=1

∣∣∣∣∣∣det
(
δF a

i

dNaj

)
i,j∈Ia

∣∣∣∣∣∣
 ∣∣∣ F(N) = f

〉
. (15)

The latter is the expectation of the product of the absolute values of n determinants of the
Sϕ × Sϕ matrices of derivatives of the components of F, conditioned to F taking value f. The
Kac–Rice formula for the nth moment of the number NS(ϕ) of uninvadable equilibria then
reads:

⟨Nn
S(ϕ)⟩=

∑
I1

|I1|= Sϕ

· · ·
∑
In

|In|= Sϕ

n∏
a=1

ˆ
dN⃗a d⃗f a

∏
i∈Ia

θ(Na
i )δ( f

a
i )

×
∏
i /∈Ia

δ(Na
i )θ(−f ai )D

(n)
N (f)P(n)

N (f) .

(16)

In (16) and henceforth, θ(x) denotes the Heaviside step function, taking value one if x> 0
and zero otherwise. By inspecting (16), one realizes that the Kac–Rice formula is obtained
averaging powers of (13) over the random variablesαij: in particular, the expectation value (15)
arises after enforcing the constraint F(N) = f as a conditioning. In the following, we determine
the behaviour of the moments (16) for generic values of n to leading exponential order in S,
and extract the complexity from it. The main steps of the calculation are summarized below,
while we refer to the appendices for details.

3.1. Large-S expansion and order parameters

The quantitiesD(n)
N (f) andP(n)

N (f) in (16) depend on the vectors Na and fa: as we show expli-
citly in appendix A, however, the dependence on these vectors enters only through their scalar
products. For a,b= 1, . . . ,n we can therefore introduce a set of order parameters defined as
follows:

Sqab = N⃗a · N⃗b, Sξab = f⃗ a · f⃗ b, Szab = N⃗a · f⃗ b, Sma = N⃗a · 1⃗, Spa = f⃗ a · 1⃗, (17)

where 1⃗= (1, . . . ,1)T is an S-dimensional vector with all entries equal to one. Let x denote the
collection of all of these order parameters. We can re-write P

(n)
N (f)→Pn(x,ϕ), D

(n)
N (f)→

Dn(x,ϕ) and thus

⟨Nn
S(ϕ)⟩=

ˆ
dxvn(x,ϕ)Dn(x,ϕ)Pn(x,ϕ) (18)

where vn(x,ϕ) is a compact notation for the ‘volume’ term:

vn(x,ϕ) = S2n(n+1)
∑
I1

|I1|=Sϕ

· · ·
∑
In

|In|=Sϕ

n∏
a=1

ˆ
dN⃗a d⃗f a

∏
i∈Ia

θ(Na
i )δ( f

a
i )
∏
i /∈Ia

δ(Na
i )θ(−f ai )

×
n∏

a,b=1

δ
(
N⃗a · N⃗b− Sqab

) n∏
a,b=1

δ
(⃗
f a · f⃗ b− Sξab

) n∏
a̸=b=1

δ
(
N⃗a · f⃗ b− Szab

)
×

n∏
a=1

δ
(
N⃗a · 1⃗− Sma

)
δ
(⃗
f a · 1⃗− Spa

)
, (19)
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where we used the fact that the equilibrium constraint imposes zaa = N⃗a · f⃗ a = 0 for any a.5

To compute the volume term, it is convenient to introduce integral representations of the con-
straints via conjugate parameters, e.g.:

δ
(
N⃗a · N⃗b− Sqab

)
=

ˆ
dq̂ab
2π

ei q̂ab(N⃗
a·N⃗b−Sqab), (20)

and similarly for all other order parameters. For each replica, we introduce a S-dimensional
vector τ⃗ a with components 0,1 such that τ ai = 1 if i ∈ Ia (meaning, if the species labelled by
i is present in the configuration N⃗a), while τ ai = 0 if i /∈ Ia. The constraint on the diversity ϕ
implies τ⃗ a · τ⃗ a = Sϕ for any a: we enforce this constraint in a similar way as above, introducing
a conjugate parameter ϕ̂a for each replica. We let x̂ denote the collection of all these conjugate
parameters. After rotating on the complex plane of the conjugate variables, we can write:

⟨Nn
S(ϕ)⟩=

1
(2π)2n2+3n

ˆ
dx idx̂ eSgn(x,x̂,ϕ)Vn(x, x̂)Dn(x,ϕ)Pn(x,ϕ) (21)

where now

gn(x, x̂,ϕ) =
n∑

a=1

(
m̂am

a+ p̂apa+ ϕ̂aϕ
)
+

n∑
a,b=1

(
q̂abqab+ ξ̂abξab

)
+
∑
a̸=b

ẑabzab (22)

and

Vn(x, x̂) = S4n(n+1)+n
∑

τ 1
i =0,1

· · ·
∑

τ n
i =0,1

ˆ n∏
a=1

dN⃗a d⃗f a e−m̂a N⃗
a ·⃗1−p̂a f⃗

a ·⃗1−ϕ̂a τ⃗
a·τ⃗ a

×
n∏

a̸=b=1

e−ẑab N⃗
a ·⃗f b

n∏
a,b=1

e−q̂ab N⃗
a ·⃗Nb−ξ̂ab f⃗

a ·⃗f b
n∏

a=1

 ∏
i:τ a

i =1

θ(Na
i )δ( f

a
i )

∏
i:τ a

i =0

δ(Na
i )θ(−f ai )

 .

(23)

The formula (21) holds for arbitrary integer value of n, and for arbitrary S. In order to
extract the quenched complexity (10), as well as the annealed one (11), we exploit the saddle
point approximation, which requires first to determine the behaviour of the integrand in (21)
to leading order in large S. More precisely, we aim at determining a function An(x, x̂,ϕ) such
that:

⟨Nn
S(ϕ)⟩=

ˆ
dx idx̂ eSAn(x,x̂,ϕ)+o(S). (24)

Given this function, the annealed complexity can be obtained setting n= 1 and optimizing
A1(x, x̂,ϕ) over the order and conjugate parameters: defining the annealed saddle point values
x1, x̂1 from:

δA1(x, x̂,ϕ)
δx

∣∣∣
x1,x̂1

= 0,
δA1(x, x̂,ϕ)

δx̂

∣∣∣
x1,x̂1

= 0, (25)

we readily obtain from (11) that:

Σ(A)
σ (ϕ) =A1(x1, x̂1,ϕ). (26)

5 Indeed, the constraint that N⃗a is an equilibrium configuration satisfying (4) implies that for each i = 1, . . . ,S, either
Nai vanishes or F a

i(N⃗a), which we imposed to take value f ai , vanishes. From this it follows that N⃗a · f⃗ a = 0.
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The calculation of the quenched complexity via the replica trick (12) requires an additional
step, that is the analytic continuation of the function An(x, x̂,ϕ) to arbitrary real values of n,
in order to take the n→ 0 limit in (12). In particular, within the saddle point scheme this can
be achieved by expanding around n= 0,

An(x, x̂,ϕ) = nĀ(x, x̂,ϕ)+ o(n). (27)

Given this expansion, the quenched variational parameters x⋆, x̂⋆ are obtained from

δĀ(x, x̂,ϕ)
δx

∣∣∣
x⋆,x̂⋆

= 0,
δĀ(x, x̂,ϕ)

δx̂

∣∣∣
x⋆,x̂⋆

= 0, (28)

and the quenched complexity from:

Σ(Q)
σ (ϕ) = Ā(x⋆, x̂⋆,ϕ). (29)

We remark that the vectors of order and conjugate parameters x, x̂ have different sizes depend-
ing on whether one is considering the annealed or the quenched setting, since the number
of order and conjugate parameters when n= 1 is smaller. As a consequence, the solutions of
the saddle point equations are different in the two cases. To proceed with the calculation and
determine An(x, x̂,ϕ) explicitly, we have to make some assumption on the structure of these
order parameters at the saddle point: this will be discussed in the following subsection.

3.2. The replica symmetric (RS) assumption and the analytic continuation

In (17) we introduced 2n(n+ 1) order parameters, with a similar number of conjugate para-
meters, to be determined via saddle point equations. In order to proceed and determine the
behaviour of the three terms appearing in (21) for generic values of n, we need to make some
assumption on these parameters. In the following, we assume that the order parameters and
the conjugate ones are symmetric with respect to permutations of the replicas, setting:

qab = δabq1 +(1− δab)q0, q̂ab = δabq̂1 +(1− δab)q̂0, ξab = δabξ1 +(1− δab)ξ0

ξ̂ab = δabξ̂1 +(1− δab)ξ̂0, zab = (1− δab)z, ẑab = (1− δab)ẑ, ma = m,

m̂a = m̂, pa = p, p̂a = p̂, ϕ̂a = ϕ̂. (30)

This choice corresponds to assuming a RS structure of the Kac-Rice saddle-point. On gen-
eral grounds, this assumption may turn out not to be exact. It is known from the theory of
conservative disordered systems that more complicated variational ansätze might be neces-
sary to correctly capture the thermodynamic behaviour of the system, described by its parti-
tion function (recall that in conservative systems, one can define a potential energy and discuss
the equilibrium properties of the system, encoded in the partition function). This is the case
of the symmetric γ= 1 Lotka–Volterra equations, whose equilibrium properties at low tem-
peratures have to be described by a more complicated structure of the order parameters (a so
called full-RSB structure) [31, 32]. In the language of standard equilibrium calculations for
conservative systems, the approximation (30) to the Kac–Rice saddle point is equivalent to a

10
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1-step breaking of symmetry in the thermodynamic calculation6. This is expected to provide
a rather good approximation even in the symmetric case [31]: for instance, it identifies with
good accuracy the diversity of the equilibria dominating the thermodynamics at zero temperat-
ure, see section 6.3. In the asymmetric case, no equilibrium calculation is available to compare
with, and (30) are assumptions the exactness of which has to be confirmed via a stability ana-
lysis of the variational manifold in which the saddle point is taken. We leave this analysis to
future work, and we consider the RS formalism in the rest of this work.

Within the RS framework, the number of order parameters x is reduced to 7 for any value
of n, with 8 conjugate parameters x̂. Under this assumption, we can derive (see appendix A
for the calculation) the explicit expression of An(x, x̂,ϕ),

An(x, x̂,ϕ) = pn(x)+ nd(ϕ)+ n
(
q̂1q1 + ξ̂1ξ1 + m̂m+ p̂p+ ϕ̂ϕ

)
+
n(n− 1)

2

(
q̂0q0 + ξ̂0ξ0 + 2îzz

)
+Jn(x̂).

(31)

In this formula, the term pn(x) is the leading order contribution at the exponential scale of
Pn(x,ϕ) in (21), and equals to:

pn(x) =− 1
2σ2(1+ γ)

nUn(x)
(q1 − q0)2 [q1 +(n− 1)q0]2

− n
2
log(2πσ2)− n− 1

2
log(q1 − q0)−

1
2
log[q1 +(n− 1)q0]

(32)

with:

Un(x) = (κ−µm)2(q1 − q0)
2
{
(1+ γ)[q1 +(n− 1)q0]− γnm2

}
− 2(κ−µm)(q1 − q0)

2 {m[q1 +(n− 1)(q0 − γz)]+ (1+ γ)p[q1 +(n− 1)q0]}
+(1+ γ)ξ1(q1 − q0)[q1 +(n− 2)q0][q1 +(n− 1)q0]− γ(n− 1)z2[q21 +(n− 1)q20]

+ (q1 − q0)
2[q1 +(n− 1)q0]

2 − (n− 1)(1+ γ)ξ0q0(q1 − q0)[q1 +(n− 1)q0]

− 2(n− 1)q0z(q1 − q0)[q1 +(n− 1)q0].

(33)

We stress that the order parameters satisfy q0 ⩽ q1, as it follows from a Cauchy–Schwarz
inequality and from the positivity of the components of N⃗: therefore, the above expressions

6 The calculation of the system’s partition function at inverse temperature β within a 1-step replica symmetry breaking
scheme involves the introduction of three different overlap parameters: a self-overlap qd(β) measuring the typical
overlap of a configuration with itself, and two additional overlaps, q1(β) and q0(β), measuring the typical similarity
between replicas belonging to the same or to different states, respectively. In the limit of zero temperature (β →∞)
the equilibrium calculation captures the properties of the deepest minima of the energy functional associated to the
system; in this limit, states collapse into isolated minima and one finds qd → q1. The saddle point values of q1(∞) and
q0(∞) are also solutions of the Kac–Rice saddle point equations obtained within the RS scheme, when conditioning
the counting of the equilibria (stationary points of the energy) to the deepest minima of the energy landscape. For an
explicit check of this correspondence in a conservative model, see [25].

11
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are well-defined. The term d(ϕ) is instead the contribution coming from the expectation value
of the determinants Dn(x,ϕ), and it reads:

d(ϕ) =
ϕ

π

ˆ 1

−1
dx
ˆ √

1−x2

0
dy log

{[
σ
√

ϕ(1+ γ)x+ 1
]2

+σ2ϕ(1− γ)2y2
}

=

{
1

4γσ2

(
1−
√

1− 4γσ2ϕ
)
+ϕ log

(
1+
√

1− 4γσ2ϕ
)
−ϕ

( 1
2 + log2

)
ϕ ⩽ ϕMay

1
2σ2

1
1+γ − ϕ

2 + ϕ
2 log(σ2ϕ) ϕ > ϕMay

(34)

where ϕMay is given in (9), and where the parameters σ and γ encode for the variability and for
the asymmetry of the interactions, respectively. Finally, the remaining term is the contribution
coming from the volume Vn(x̂,x), and can be compactly written as:

Jn(x̂) = log

[
n∑

k=0

(
n
k

)
e−iϕ̂k

ˆ
dy

n∏
a=1

θ(ya)exp

(
−1

2
yT ·Ak[x̂] · y−µk[x̂] · y

)]
, (35)

where we introduce the following n× n matrices and n× 1 vectors:

Ak[x̂] =

 k×k

Q̂ −
k×(n−k)

Ẑ

−
(n−k)×k

Ẑ
(n−k)×(n−k)

X̂

 , µk[x̂] =

 k×1
m̂

(n−k)×1

−p̂

 , (36)

with

Q̂ab = 2δab q̂1 +(1− δab)q̂0, Ẑab = ẑ, X̂ab = 2δab ξ̂1 +(1− δab)ξ̂0. (37)

and with

m̂a = m̂, p̂a = p̂. (38)

The derivation of these terms is given in full detail in appendix A. From these expressions, we
can obtain the explicit form of the functionals to be optimized in the quenched and annealed
calculation, respectively.

3.2.1. The quenched case. Expanding (31) to linear order in n we obtain:

Ā(x, x̂,ϕ) = p̄(x)+ d(ϕ)+ q̂1q1 + ξ̂1ξ1 + m̂m+ p̂p+ ϕ̂ϕ− 1
2

(
q̂0q0 + ξ̂0ξ0

)
− ẑz+ J̄(x̂),

(39)

where:

p̄(x) =
(κ−µm)
σ2(1+ γ)

m(q1 − q0 + zγ)
(q1 − q0)2

+
(κ−µm)

σ2

p
(q1 − q0)

− γ

2σ2(1+ γ)

z2(q1 + q0)
(q1 − q0)3

− ξ1
2σ2(q1 − q0)

− q0(ξ0 − ξ1)

2σ2(q1 − q0)2
− 1

2σ2(1+ γ)

[
1+

2q0z
(q1 − q0)2

]
− 1

2σ2

(κ−µm)2

q1 − q0

− log[2πσ2(q1 − q0)]
2

− q0
2[q1 − q0]

,

(40)

12
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and where J̄(x̂) admits the following integral representation:

J̄(x̂) =
ˆ

du1du2

2π
√
q̂0ξ̂0 − ẑ2

exp

[
ξ̂0u

2
1 + q̂0u

2
2 − 2ẑu1u2

2(q̂0ξ̂0 − ẑ2)

]

× log

e−ϕ̂
√

π

2[2q̂1 − q̂0]
Π

(
m̂− u1√

2(2q̂1 − q̂0)

)
+

√
π

2[2ξ̂1 − ξ̂0]
Π

 −[p̂− u2]√
2(2ξ̂1 − ξ̂0)

 ,
(41)

with

Π(x) = ex
2

Erfc(x), Erfc(x) =
2√
π

ˆ ∞

x
e−t2dt. (42)

The integral representation (41) is derived under the assumptions:

2q̂1 − q̂0 > 0, 2ξ̂1 − ξ̂0 > 0, q̂0 < 0 ξ̂0 < 0, q̂0ξ̂0 − ẑ2 > 0. (43)

In this case, the function depends on 7 order parameters q1,q0, ξ1, ξ0,z,m,p and 8 conjugate
parameters q̂1, q̂0, ξ̂1, ξ̂0, ẑ, m̂, p̂, ϕ̂ to be determined via the saddle-point calculation.

3.2.2. The annealed case. By choosing n= 1, we obtain instead:

A1(x, x̂,ϕ) = p1(x)+ d(ϕ)+
(
q̂1q1 + ξ̂1ξ1 + m̂m+ p̂p+ ϕ̂ϕ

)
+J1(x̂), (44)

with

p1(x) =− 1
2σ2q21

[
(κ−µm)2

(
q1 −

γm2

1+ γ

)
− 2(κ−µm)q1

(
p+

m
1+ γ

)
+ ξ1q1

]
− 1

2
log(2πσ2 q1)−

1
2σ2(1+ γ)

(45)

and

J1(x̂) = log

1
2

√
π

ξ̂1
e

p̂2

4ξ̂1 Erfc

− p̂

2
√
ξ̂1

+
e−ϕ̂

2

√
π

q̂1
e

m̂2

4̂q1 Erfc

(
m̂

2
√
q̂1

) . (46)

As expected, this functional does not depend on q0, ξ0,z and on the associated conjugate para-
meters, that have a meaning only whenever more than one replica is present. One is left there-
fore with 4 order parameters q1, ξ1,m,p and 5 conjugate parameters q̂1, ξ̂1, m̂, p̂, ϕ̂ to determine
via the saddle-point calculation.

3.3. The linear stability matrices, their spectrum and the May bound

Comparing the expressions (31) and (44), one notices that the contribution of the expectation
value of the product of determinants (15) at the exponential scale in S equals to nd(ϕ), where
d(ϕ) is the contribution one gets for n= 1. This implies that at the exponential scale in S,
the contribution of n replicas is simply n-times the contribution of one single replica. There
are essentially two reasons for this: (i) to leading (exponential) order in S, the conditional
expectation value of the product of determinants factorizes into the product of the conditional
expectation values, and (ii) the conditioning to F(N) = f is irrelevant to leading (exponential)
order in S. We argue for these facts in appendix A.2, and here we just briefly discuss the

13
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statistics of one of these linear stability matrices prior to conditioning, given that this is what
matters for the calculation of the complexity.

The Nϕ ×Nϕ linear stability matrices (8) can be decomposed, using (3), as:

Hij ≡

(
∂Fi(N⃗)
∂Nj

)
=−

(
σ
√
ϕ√
Sϕ

aij+
µ

S
+ δij

)
i, j ∈ I. (47)

The first term in (47) is a random matrix of the real elliptic type, with variance v2 = σ2ϕ and
with asymmetry parameter γ [43]. The elliptic ensemble takes its name from the fact that the
asymptotic density of eigenvalues of such matrices is given by a uniform distribution on the
complex plane, having an ellipse as support [44, 45]. More precisely, the empirical spectral
measures µM(λ) of M×M real elliptic matrices with variance v and asymmetry parameter
γ converges almost surely (when M→∞) to a deterministic measure dµ(λ) = ρ(λ)dλ with
density [46]:

ρ(λ) =
1

π v2(1− γ2)
1λ∈Sv,γ , Sv,γ =

{
(ℜλ)2

v2(1+ γ)2
+

(ℑλ)2

v2(1− γ)2
⩽ 1

}
. (48)

For γ= 0, the ensemble is known as real Ginibre ensemble [47]. Its limiting density, known
as ‘circular law’, was first derived in [48] for matrices with real entries. As it happens with the
semicircular law for real symmetric matrices, the convergence to the elliptic law is universal
[45], and moreover the limiting form (48) is not affected by finite rank perturbations to the
matrix. Finite rank perturbations may give rise to outliers that do not belong to the support
Sv,γ ; however, the spectral weight associated to these isolated eigenvalues is suppressed at
large M with respect to the contribution of the bulk density ρ(λ) (see [49] for the explicit
calculation of these outliers for elliptic matrices with real entries subject to finite-rank additive
perturbations). This implies that the second constant term in (47) does not modify (48) toO(1)
in S, as it corresponds to a rank-one additive perturbation of strength µϕ along the direction
of the Sϕ—dimensional vector (1, . . . ,1)T. The asymptotic density (48) is the only quantity
needed to compute the conditional expectation value of the determinant to leading order in the
dimensionality S, and taking into account the shift given by the identity matrix in (47) one gets
the integral expression (34), see appendix A.2 for the precise derivation. The role of the May
diversity ϕMay as a stability threshold is then clear: the asymptotic density of the matrix (47)
is supported on a shifted ellipse, whose upper edge on the real axis is given by v(1+ γ)− 1=
σ
√
ϕ(1+ γ)− 1: therefore, at ϕ = ϕMay = [σ(1+ γ)]−2 the edge of the support touches zero,

corresponding to marginal stability of the associated equilibria.

3.4. The variational problem: general route

Given the explicit form of the functionals A1 and Ā, the general route to determine the com-
plexity is as follows. In the quenched case, taking the variation of Ā(x, x̂,ϕ) with respect to
the 15 order and conjugate parameters we obtain two sets of equations of the form x= F1[x̂]
and x̂= F2[x], respectively. These equations couple the 7 order parameters x with the 8 con-
jugate parameters x̂: inverting one of these sets, one can express the order parameters as a
function of the conjugate parameters, x= f3[x̂]. The latter can then be fixed by solving the
set of coupled self-consistent equations x̂= F2[f3[x̂]]: once the self-consistent values of the
conjugate parameters x̂ are found, the order parameters can be determined and the quenched
complexity can be obtained. The annealed calculation is formally analogous. This scheme can
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be implemented for generic values of γ: we report the generic saddle point equations obtained
from the variational procedure in appendix B, and focus on the uncorrelated case γ= 0 in the
following.

4. The uncorrelated γ=0 case: solving the self-consistent equations

To illustrate the strategy to solve the saddle-point problem, we focus on the uncorrelated case
γ= 0, when several simplifications occur which allow us to reduce the number of equations
to be solved. We begin the discussion from the quenched case.

4.1. The quenched self-consistent equations

The equations for the order and conjugate parameters obtained taking the variation of Ā are
given in appendix B. For γ= 0, one sees that the equation for ẑ and that for ξ̂0 are identical,
implying ẑ= ξ̂0. The remaining conjugate parameters satisfy self-consistent equations that are
more concisely written in terms of this new set of variables:

x1 =
m̂√

2q̂1 − q̂0
, x2 =

p̂√
2ξ̂1 − ξ̂0

, y=
√

2ξ̂1 − ξ̂0, r=

√
2q̂1 − q̂0
2ξ̂1 − ξ̂0

,

β1 =
q̂0
y2
, β2 =

ξ̂0
y2
. (49)

We recall that the expressions in the previous section are derived under the assumptions (43),
which imply y> 0. We therefore assume y> 0, and comment in section 5.2 on the meaning
of y→ 0 (as we shall see, this is related to the emergence of the unbounded regime). As we
derive in appendix D, the relations x̂= F2[x] can be rewritten as:

(a) x2 =−κy+µ my,

(b) rx1 = (1+µ)x2 +µ(ym+ yp) ,

(c) 1= σ2y2(q1 − q0),

(d) β2 = 1−σ2y2q1 =−σ2y2q0,

(e) r2 = σ2 −σ2(ξ1 − ξ0 − 2z)y2,

( f) β1 = r2β2 +
µ+ 2
µ

σ2x22 −
2
µ
σ2x1x2r+σ4q1y

2 −σ2
[
r2q1y

2 + ξ1y
2
]
.

(50)

The equation defining implicitly the remaining conjugate parameter ϕ̂ can be written as:

ϕ =

ˆ
du1du2Gx̂(u1,u2)

e
(u1−x1)

2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)

, (51)

where we introduced the functions:

Gx̂(u1,u2) =
r
2π

e−
1
2

(
u21r

2−2ru1u2+u22
β1
β2

)
β2−β1√

β1β2 −β2
2

,

Rx̂(u1,u2) = e
(u1−x1)

2

2 Erfc

(
x1 − u1√

2

)
+ eϕ̂re

(u2−x2)
2

2 Erfc

(
− [x2 − u2]√

2

)
.

(52)
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In turn, the order parameters appearing in (50) are themselves functions of the conjugate
parameters x1,x2,β1,β2,r, ϕ̂, given by the following convolutions:

my=
ˆ

du1du2Gx̂(u1,u2)

1
r

√
2
π − (x1 − u1)e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)


py=

ˆ
du1du2Gx̂(u1,u2)

−reϕ̂

√
2
π +(x2 − u2)e

(x2−u2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)


(53)

and

q1y
2 =

ˆ
du1du2Gx̂(u1,u2)

−
√

2
π (x1 − u1)+ [1+(x1 − u1)2]e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
r2 Rx̂(u1,u2)


ξ1y

2 =

ˆ
du1du2Gx̂(u1,u2)

eϕ̂r
√

2
π (x2 − u2)+ [1+(x2 − u2)2]e

(u2−x2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)


(54)

and finally

q0y
2 =

ˆ
du1du2Gx̂(u1,u2)

1
r

√
2
π − (x1 − u1)e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)


2

ξ0y
2 =

ˆ
du1du2Gx̂(u1,u2)

−reϕ̂

√
2
π +(x2 − u2)e

(x2−u2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)


2

zy2 =
ˆ

du1du2Gx̂(u1,u2)

1
r

√
2
π − (x1 − u1)e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)


×

−reϕ̂

√
2
π +(x2 − u2)e

(x2−u2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)

 . (55)

Plugging these expressions into (50) and (51), one gets therefore a set of coupled self-
consistent equations for the rescaled conjugate parameters (49) together with ϕ̂. The motiv-
ation for introducing the rescaled parameters (49) is that the equations expressed in terms of
these variables can be partially decoupled. Inspecting the equations one notices indeed that
the convolutions on the right-hand side of equations (53)–(55) do not depend on y explicitly;
on the other hand, in (50) the order parameters appear multiplied by the suitable power of y
which appears also to the left-hand side of the equations (53)–(55). Therefore, the value of y
can be fixed at the end of the calculation using equation (50a), (where the product my is given
in (53) and does not depend on y itself), once the values of the other conjugate variables are
determined. Moreover, the fixed parameter ϕ appears only in the equation (51); therefore, one
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can tune it by tuning its conjugate parameter ϕ̂. As a consequence, one can solve the coupled
equations for x1,x2,β1,β2,r at fixed value of ϕ̂, and then use (51) to determine the diversity
ϕ corresponding to the chosen ϕ̂. Repeating this procedure for different values of ϕ̂, one can
parametrically resolve the complexity as a function of ϕ. This procedure then leaves us with
5 coupled self-consistent equations for the parameters x1,x2,β1,β2,r.

Exploiting an additional relation between the convolutions in (53)–(55), we now show that
the number of relevant equations can be further reduced by one. The simplification comes from
noticing that the integral expression are related by the following identity:

r2[q1y
2] + [ξ1y

2] =−rx1 [my]− x2 [py] + 1−β1
(
[q1y

2]− [q0y
2]
)

−β2
(
[ξ1y

2]− [ξ0y
2]− 2[zy2]

)
, (56)

where the expressions within the brackets have to be replaced by the integral representa-

tions (53)–(55). This identity follows from integration by parts, see appendix C. It holds for
arbitrary values of γ. Plugging it into equation (50f ) and using that σ4q1y2 = σ2(1−β2),
σ2β1

(
q1y2 − q0y2

)
= β1 together with equation (50e), we are left with:

x22 +
2
µ
x22 −

2
µ
rx1x2 + rx1my+ x2 py= 0. (57)

Using now equation (50b) to eliminate py we find that equation (50f ) reduces to:

(µmy− x2)(rx1 − x2) = κy(rx1 − x2) = 0, (58)

which for y ̸= 0 is simply solved by x2 = x1r. Plugging x2 = rx1 into the remaining equations,
we are left with 4 self-consistent equations to solve simultaneously for x1,r,β1,β2 at fixed
value of ϕ̂:

(a) rx1 =−(ym+ yp) ,

(b) β2 = 1−σ2y2q1 =−σ2y2q0,

(c) 1= σ2y2(q1 − q0),

(d) r2 = σ2 −σ2(ξ1 − ξ0 − 2z)y2.

(59)

Explicitly, these equations read:

rx1 +
ˆ

duGx̂(u1,u2)

1
r

[√
2
π
− (x1 − u1)Π

(
x1−u1√

2

)]
− reϕ̂

[√
2
π
+(rx1 − u2)Π

(
− rx1−u2√

2

)]
Rx̂(u1,u2)

= 0,

(60)

and

β2 +σ2
ˆ

duGx̂(u1,u2)

1
r

√
2
π − (x1 − u1)Π

(
x1−u1√

2

)
Rx̂(u1,u2)


2

= 0, (61)

and

1−β2 −σ2
ˆ

duGx̂(u1,u2)
1
r2

[1+(x1 − u1)2] Π
(
x1−u1√

2

)
−
√

2
π (x1 − u1)

Rx̂(u1,u2)
= 0, (62)
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and finally

r2 −σ2 +σ2
ˆ

duGx̂(u1,u2) e
ϕ̂r

√
2
π (rx1 − u2)+ [1+(rx1 − u2)2]Π

(
− rx1−u2√

2

)
Rx̂(u1,u2)

+σ2
ˆ

duGx̂(u1,u2)

reϕ̂
√

2
π +(rx1 − u2)Π

(
− rx1−u2√

2

)
Rx̂(u1,u2)


×

 2
r

[√
2
π − (x1 − u1)Π

(
x1−u1√

2

)]
− reϕ̂

[√
2
π +(rx1 − u2)Π

(
− rx1−u2√

2

)]
Rx̂(u1,u2)

= 0, (63)

where we recall that the function Π is defined in (42). Once these equations are solved (for
instance, by iteration), one can determine the parameters ϕ,y through:

ϕ=

ˆ
duGx̂(u1,u2)

Π
(
x1−u1√

2

)
Rx̂(u1,u2)

, (64)

and

κy=−rx1 +µ

ˆ
duGx̂(u1,u2)

1
r

√
2
π − (x1 − u1)Π

(
x1−u1√

2

)
Rx̂(u1,u2)

 . (65)

Once also y is fixed, one can use equations (53)–(55) to solve for the order parameters.
It is quite straightforward to check that the quenched complexity can be expressed as a

function of the conjugate parameters (49) as:

Σ
(Q)
σ =

1
2

[
1− r2(q0y

2)− (ξ1y
2)− 1

σ2

]
+

ˆ
duGx̂(u1,u2) log

[
Rx̂(u1,u2)

2r

]
− ϕ̂(1−ϕ)+ d(ϕ)

(66)

where the quantities q0y2, ξ1y2 and ϕ are again given by the integral representations and where
for γ= 0 the contribution of the determinant reads:

d(ϕ) =

{
0 if σ

√
ϕ < 1

1
2σ2 − ϕ

2 +
ϕ
2 log(σ2ϕ) if σ

√
ϕ > 1

(67)

Notice that (66) does not depend explicitly on y.

4.2. The annealed self-consistent equations

For the annealed case, we can proceed similarly as for the quenched, see again appendix D for
details. We introduce a new set of variables that plays the same role as above, but which we
denote with curly symbols to signify that they take different values at the saddle-point with
respect to the corresponding quenched quantities:

x1 =
m̂√
2q̂1

, x2 =
p̂√
2ξ̂1

, y=

√
2ξ̂1, r=

√
q̂1
ξ̂1
. (68)

18



J. Phys. A: Math. Theor. 56 (2023) 305003 V Ros et al

The variational equations obtained taking the derivatives of (44) read in this case:

(a) x2 =−κy+µ my,

(b) rx1 = (1+µ)x2 +µ(my+ py) ,

(c) 1= σ2q1y
2,

(d) r2 = σ2 −σ2 ξ1y
2 +σ2x2

2 −
2
µ
σ2x2(rx1 −x2).

(69)

Taking the derivatives with respect to the conjugate parameters, we obtain instead:

my=
1
r

√
2
π −x1 e

x2
1

2 Erfc
(
x1√
2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

x2
2

2 Erfc
(
− x2√

2

)
py=−reϕ̂

√
2
π +x2 e

x2
2

2 Erfc
(
− x2√

2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

x2
2

2 Erfc
(
− x2√

2

)
(70)

and similarly:

q1y
2 =

1
r2

−
√

2
π x1 +(1+x2

1)e
x2

1
2 Erfc

(
x1√
2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

x2
2

2 Erfc
(
− x2√

2

)
ξ1y

2 = eϕ̂r

√
2
π x2 +(1+x2

2)e
x2

2
2 Erfc

(
− x2√

2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

x2
2

2 Erfc
(
− x2√

2

)
. (71)

Similarly to the quenched case, by inspecting equations (70) and (71) we see that the fol-
lowing relation holds:

r2[q1y
2] + [ξ1y

2] =−rx1[my]−x2[py] + 1, (72)

where again the brackets indicate that the products inside have to be replaced by the corres-
ponding expressions in the right-hand side of equations (70) and (71). This relation, when
substituted into equation (69d) leads to x2 = rx1, similarly to the quenched case. Therefore, in
the annealed case we are left with two coupled self-consistent equations for x1 and r at fixed
ϕ̂:

(a) rx1 =−(my+ py) ,

(b) 1= σ2q1y
2

(73)

or, explicitly:

rx1 +

1
r

[√
2
π −x1 e

x2
1

2 Erfc
(
x1√
2

)]
− reϕ̂

[√
2
π + rx1 e

r2x2
1

2 Erfc
(
− rx1√

2

)]
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

r2x2
1

2 Erfc
(
− rx1√

2

) = 0 (74)

and

r2 −σ2

√
2
π x1 − (1+x2

1)e
x2

1
2 Erfc

(
x1√
2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

r2x2
1

2 Erfc
(
− rx1√

2

) = 0. (75)
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Once x1 and r are determined, ϕ and y can be fixed via:

ϕ =
e
x2

1
2 Erfc

(
x1√
2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

r2x2
1

2 Erfc
(
− rx1√

2

) , (76)

and

κy=−rx1 +
µ

r

√
2
π −x1 e

x2
1

2 Erfc
(
x1√
2

)
e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

r2x2
1

2 Erfc
(
− rx1√

2

) . (77)

The annealed complexity can be expressed as a function of the solutions of the saddle-point
equations as follows:

Σ
(A)
σ =

1
2

(
1− ξ1y

2 − 1
σ2

)
+ log

e
x2

1
2 Erfc

(
x1√
2

)
+ eϕ̂re

x2
2

2 Erfc
(
− x2√

2

)
2r

− ϕ̂(1−ϕ)+ d(ϕ),

(78)

where d(ϕ) is still given by (67). Again, (78) does not depend on y.

4.3. When quenched and annealed coincide: the ‘cavity’ matching point

We now discuss a particular point in the space of solutions of the quenched self-consistent
equations, which corresponds to ϕ̂= 0. We define this as the ‘cavity’ point since, as we shall
show, when this point is reached the quenched equations map into the annealed one, and
become equivalent to the equations obtained within the cavity method recalled in appendix E.
From the solution of the quenched self-consistent equations one sees that when ϕ̂→ 0− the
equations become singular, since it holds:

r→ 1, β1 → β2. (79)

We therefore introduce the following scaling parameters:

∆= β2 −β1, R=
β1

β2
. (80)

The point ϕ̂= 0 has to be approached as a limit since the convolutions in (53)–(55) are derived
under the assumptions ∆> 0 and R> 1; in the limit we are considering,

∆→ 0, R→ 1,
∆2

R− 1
→ b, r→ 1, (81)

the integrands remain regular while the Gaussian measure

Gx̂(u1,u2) =
r
√
R− 1

2π ∆2
e−

1
2

(u21r2−2ru1u2+Ru22)
∆2 (82)

becomes singular, since the quadratic form at the exponent displays a divergent eigenvalue.
Diagonalizing the quadratic form and taking the above limits, we see that:

Gx̂(u1,u2)→
1√
2π b

e−
1
2b u

2
1δ (u1 − u2) . (83)
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Plugging this into (53) and using that x2 = rx1 at the saddle point, we get:

my→
√
1+ b

√
2
π − x1√

1+b
e

x21
2(1+b)Erfc

(
x1√

2(1+b)

)
2e

x21
2(1+b)

py→−
√
1+ b

√
2
π + x1√

1+b
e

x21
2(1+b)Erfc

(
− x1√

2(1+b)

)
2e

x21
2(1+b)

(84)

and similarly from (54) we get:

q1y
2 → (1+ b)

−
√

2
π

x1√
1+b

+
[
1+ x21

1+b

]
e

x21
2(1+b)Erfc

(
x1√

2(1+b)

)
2e

x21
2(1+b)

ξ1y
2 → (1+ b)

√
2
π

x1√
1+b

+
[
1+ x21

1+b

]
e

x21
2(1+b)Erfc

(
− x1√

2(1+b)

)
2e

x21
2(1+b)

.

(85)

It appears that in this limit, the parameter b can be re-absorbed by rescaling x1,y, and the
annealed expressions for the order parameters can be recovered. More precisely, comparing
these expressions with (70) and (71) we see that the quenched expressions for the order para-
meters m,p,q1, ξ1 reproduce the annealed expressions (using again that rx1 = x2), provided
that we identify:

y= y
√
1+ b, x1 = x1

√
1+ b, r= r= 1. (86)

Moreover, with these identifications the first two of equation (59) map into equation (73), and
similarly (64) and (65) map into (76) and (77). Therefore, in this limit the quenched calculation
reproduces the annealed one, and the physical order parametersm,p,q1, ξ1 computed in the two
schemes coincide. As we show explicitly in appendix E, the value of ϕ corresponding to this
point is exactly the same obtained within the cavity approximation: we denote it with ϕcav.
Also the values of the order parameters m,q1 coincide with those obtained within the cavity
formalism.

The quenched prescription provides us with two additional equations, the last two ones
in equation (59). It is easy to check, using the expressions (55) and using equation (59c),
that equation (59d) is automatically satisfied at the cavity point (see appendix E). Finally,
we remark that once the annealed self-consistent equations are solved and x1 is determined,
equation (59c) gives a self-consistent equations for the parameter b, which reads:

b= σ2
ˆ

du
e−

u2

2b

√
2πb


√

2
π − (x1(b)− u)e

(x1(b)−u)2

2 Erf
(
x1(b)−u√

2

)
2e

(x1(b)−u)2

2


2

, x1(b) =
x1√
1+ b

. (87)

This parameter b is in general not equal to zero, which in turn implies that at this point q0 ̸= 0,
given that the two sets of equations, in particular equation (59c), imply the following relation
at the cavity matching point:

q0 =
b

1+ b
q1. (88)

Therefore, within the quenched calculation the annealed limit is not attained when q0, ξ0,z→
0, as one might naively expect.
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In the cavity limit the two functions (66) and (78) coincide. Indeed, using (83) and r= 1
one finds that: ˆ

du1du2Gx̂(u1,u2) log [Rx̂(u1,u2)]→ log2+
b+ x21

2
. (89)

and thus from (86) we get:

Σ(Q)
σ −Σ(A)

σ →−1+ b
2

[
(q0y

2)+ (ξ1y
2)
]
+
b+(1+ b)x2

1

2
− x2

1

2
= 0, (90)

as it follows from (72), (88) and (73).

5. The uncorrelated γ=0 case: the resulting complexity

We have discussed in the previous section the structure of the self-consistent equations
obtained in the uncorrelated case γ= 0. In this section, we present what the solutions of these
equations entail for the quenched and annealed complexity of the model. Some of these results
are also discussed in [30].

5.1. Quenched complexity, annealed complexity and the cavity matching point

A plot of the quenched and annealed complexities Σσ(ϕ) of uninvadable equilibria is given in
figure 1 for γ= 0 and for two representative values of σ > σc in the multiple equilibria phase.
The complexity curves are positive for an extensive range of diversities ϕ ∈ [ϕa(σ),ϕb(σ)],
that becomes larger as σ increases; therefore, for σ large enough the generalized Lotka–
Volterra dynamical equations admit an exponentially large number of uninvadable equilib-
rium configurations with a full distribution of diversities. To each value of σ there corresponds
a unique value of diversity ϕmax which maximizes the complexity curveΣ(Q)

σ (ϕ), giving there-
fore the diversity of the equilibria that are the exponentially most numerous at the given σ. All
these equilibria are linearly unstable, since they have values of diversities ϕ that all exceed the
May stability bound, equation (9). Both plots show the special value of the diversity parameter
ϕcav, such that for ϕ > ϕcav the annealed complexity is strictly larger than the quenched one,
while for ϕ ⩽ ϕcav the two curves coincide. The diversity ϕcav corresponds exactly to the cavity
point discussed in section 4.3: it is the diversity corresponding to ϕ̂= 0 in the self-consistent
equations. When ϕ → ϕ+

cav, the solutions of the quenched self-consistent equations satisfy the
limiting behaviour (79), and the quenched equations can be mapped exactly to the annealed
one as shown in section 4.3. We remark that the mapping of section 4.3 holds exactly at the
cavity point and not for ϕ < ϕcav, since it assumes r= 1: the complexity at smaller values of
diversity ϕ (equivalently, at larger values of ϕ̂) must then be obtained solving the annealed self-
consistent equations of section 4.2, since the quenched ones have no meaning in this regime.
In figure 2 we show the behaviour of the conjugate parameters obtained solving the quenched
equations, to confirm that the limiting behaviour (81) holds true when ϕ̂→ 0−.

5.2. Role of the average interaction strength µ and the unbounded phase

Let us comment on the role of the parameters µ,κ. We focus on the quenched case to fix the
ideas—the annealed case is analogous. As it follows from the discussion in sections 4.1 and 4.2,
the coupled self-consistent equations for the quenched parameters r,x1,β1,β2 are independent
of µ,κ; the equations relating the diversity ϕ to the conjugate parameter ϕ̂ do not depend on
µ,κ either. The parameters µ and κ enter only in the equation for y. Given that equation (66)
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Figure 1. Quenched (magenta) and annealed (blue) complexity of uninvadable equi-
libria as a function of the diversity ϕ, for γ= 0 and σ = 2,5> σc. For ϕ > ϕcav the
annealed complexity is strictly larger than the quenched one, while the two coincide
for ϕ < ϕcav. Both the annealed and quenched complexities are positive only for values
of diversity that are beyond the May bound, meaning that all the equilibria are linearly
unstable with respect to perturbations in the populations of species that coexist.

Figure 2. Behaviour of the parameters r,∆=
√
β2 −β1,R= β1/β2 and ∆2/(R− 1)

obtained solving the quenched self-consistent equations at a fixed value of the conjugate
parameter ϕ̂. The plot shows for ϕ̂→ 0−, the solutions to the saddle point equations
satisfy r,R→ 1, and ∆→ 0, which is the limiting behaviour discussed in section 4.3.
Moreover, the ratio∆2/(R− 1) approaches a finite value b= 0.146. For positive values
of ϕ̂, the annealed self-consistent equations have to be considered.
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Figure 3. Left. Critical curve separating the unbounded phase (µ < µc) from the
bounded one (µ > µc), as a function of the diversityϕ and for fixedσ. Right. Complexity
of equilibria for σ < σc =

√
2. In this region, annealed and quenched calculations coin-

cide. The complexity is non-zero only at the value of diversity predicted by the cavity
formalism.

does not depend on y, it follows that the complexity curves Σ(Q)
σ (ϕ) at fixed values of σ are

the same for any value of µ,κ. Changes in µ,κ amount to changing the value of variable y,
and therefore to rescaling the order parameters: since κ just gives a simple linear rescaling of
y, see equation (65), we set κ= 1. From equation (65) it follows that decreasing µ at fixed
σ,ϕ, the variable y decreases and therefore the values of m,q1,q0 increase. Thus, decreasing
µ one can drive the system toward the unbounded phase, where the order parameters diverge.
The unbounded phase is reached whenever y→ 0, which is also a limit of stability of our
calculation—recall that all the self- consistent equations are obtained under the assumption
that y> 0. For each σ one can define a curve of critical values µc(ϕ) such that for values of
µ < µc, equilibria with diversity ϕ are in the unbounded phase. An example of this curve is
given in figure 3(left). Notice that it holds:

µ∗ ≡ max
ϕ:Σ(ϕ)⩾0

µc(ϕ) = µc(ϕa)> µc(ϕcav). (91)

Therefore, the prediction of the location of the unbounded regime obtained through the cavity
calculation does not account for all the equilibria: for µ slightly larger than µc(ϕcav), there are
still equilibria at ϕ < ϕcav that are in the unbounded regime. On the other hand, if one defines
the phase boundary by requiring that only the most numerous equilibria (those having ϕ =
ϕmax) are bounded, one gets a yet different transition line which can be determined explicitly
from our calculation. Finally, the divergence of the dynamics might be on yet another different
line. The transition to the unbounded phase can also be characterized in terms of an isolated
eigenvalue in the spectrum of the stability matrix: it is expected to occur at those values of
parameters for which the isolated eigenvalue crosses zero (in the unique equilibrium phase,
this has been argued in [50]).

5.3. Behaviour of the order parameters

We focus on values of µ > µc(ϕa) large enough so that none of the equilibria in this range of
diversities is unbounded. The behaviour of the order parameters is shown in figure 4 for one
such value of µ. One sees that more diverse equilibria have a smaller average abundance m,
and are less correlated to each others (the typical overlap between them q0 is smaller). The
abundance m and the self-overlap q1 obtained within the annealed approximation are a lower
bound to the quenched ones, as shown more clearly in the inset of the plots.
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Figure 4. Order parameters characterizing the equilibria at fixed diversity ϕ, for σ= 4
and µ= 30. The insets are zoomed versions of the main plots. More diverse equilibria
have a smaller average abundancem, and are less correlated to each others (q0 is smaller).
For ϕ > ϕcav, the annealed calculation underestimates the average abundance m and the
self-overlap q1 of the equilibria.

Figure 5. Left. Relevant diversities as a function of σ. The two black lines show the
edges ϕa(σ),ϕb(σ) of the support of the quenched complexity, i.e. the boundary of the
interval of diversities (grey area) within which the quenched complexity is positive. The
dotted lines correspond to the diversity maximizing the annealed (blue) and quenched
(pink) complexity, while the black squares give ϕcav. Finally, the orange dashed line
corresponds to the diversity ϕMay above which all equilibria are linearly unstable. Right.
Zoom of the plot in the vicinity of the critical value σc =

√
2, where all curves cross.

5.4. Dependence on σ and the topology trivialization transition

In figure 5 we show the σ-dependence of the relevant diversities; the grey area gives the support
of the quenched complexity, which is seen to decrease with decreasing σ.

As the unique-to-multiple equilibria transition is approached, the complexity curves such
as those in figure 1 decrease in height, while their support squeezes. At the same time, ϕcav

moves towards ϕmax, see figure 5(right). Exactly at σ = σc =
√
2, one finds that the complex-

ity is maximal at ϕmax = ϕcav = 1/2, and the corresponding complexity vanishes: the unique
equilibrium phase is reached. At the transition, the annealed self-consistent equations (to which
the quenched ones reduce to) are solved by r= 1,x1 = 0, which imply y2 = µ2/(2π) and thus
m=−p= µ−1and q1 = ξ1 = πµ−2. One would naturally expect that the transition corres-
ponds to b→ 0 but this cannot be concluded from the equation (87): indeed, plugging x1 = 0
into (87) one simply finds an identity for any value of b. For σ < σc, the annealed complexity
is non-zero only at ϕ = ϕcav, see figure 3(left), which is indeed the diversity of the unique
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Figure 6. Total quenched complexity Σtot
σ =Σ

(Q)
σ (ϕmax) as a function of σ: the black

dotted line is a quadratic fit of the form Σtot
σ = a(σ−σc)

2 with a≈ 0.037.

equilibrium. For other values of ϕ, the complexity is negative, signifying that no equilibria of
those diversities exist typically (i.e. the probability to find them is exponentially suppressed in
S, as it follows from the Markov inequality [51]).

In figure 6, we show the behaviour of the total quenched complexity

Σtot
σ =Σ(Q)

σ (ϕmax). (92)

At the trivialization transition σ = σc =
√
2 the total complexity vanishes asΣtot

σ ∼ (σ−σc)
2.

The quadratic vanishing of the complexity at the transition has been observed in other models
[18, 24, 52] treated within the annealed approximation, and it has been conjectured to be a
robust feature. In fact, we find (see section 6.2) that the same behaviour holds true for general γ
within the annealed approximation. For γ= 0, this behaviour is recovered within the quenched
framework, too, as we now show explicitly. Indeed, the total derivative of the quenched com-
plexity with respect to σ is contributed by four terms:

dΣtot
σ

dσ
=∇xĀ(x, x̂,ϕ)∂σx+∇x̂Ā(x, x̂,ϕ)∂σ x̂+ ∂ϕĀ(x, x̂,ϕ)∂σϕ+ ∂σĀ(x, x̂,ϕ)

∣∣∣
x∗,x̂∗,ϕmax

. (93)

The first three terms vanish for any value of σ, due to the fact that x∗, x̂∗,ϕmax are precisely

chosen to maximize Ā. On the other hand, the derivative with respect to σ,

∂σĀ(x, x̂,ϕ) = ∂σp̄(x)
∣∣∣
x∗,x̂∗,ϕmax

+ ∂σd(ϕ)
∣∣∣
x∗,x̂∗,ϕmax

, (94)

also vanishes when plugging the values of the order parameters at σ = σc, since both terms

vanish separately. Indeed, taking the derivative of (67) one finds

∂σd(ϕ) =

{
0 if 0< σ

√
ϕ < 1

− 1
σ3 +

ϕ
σ if σ

√
ϕ > 1,

(95)
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which vanishes at ϕ = ϕMay = σ−2, which is the ϕmax at σ = σc. On the other hand, the partial
derivative of (40) for κ= 1 and γ= 0 reads:

∂σp̄(x) =− 1
σ

2
σ3

[
1
2
+

q0z
(q1 − q0)2

− (m+ p)(1−µm)
(q1 − q0)

+
ξ1

2(q1 − q0)

+
q0(ξ0 − ξ1)

2(q1 − q0)2
+

1
2
(1−µm)2

q1 − q0

]
. (96)

At σ = σ−
c , the annealed calculation implies that the order parameters characterizing one

single replica equal to m=−p= µ−1and q1 = ξ1 = πµ−2. Using that these parameters are
continuous at σc, plugging them into the quenched equation (59) and using that r= 1 one
finds ξ1 − ξ0 − 2z= (q1 − q0). Using these results, one sees that also (96) vanishes at σ = σc.

6. Additional results for γ ̸=0

We do not present in this work the results for the quenched complexity for γ ̸= 0; however, we
discuss in this section some interesting dependence on the asymmetry parameter γ that can be
deduced from the (much simpler) calculation of the annealed complexity.

6.1. On the stability of equilibria for general γ

For γ= 0, it follows from the calculation presented above that all the uninvadable equilibria
are linearly unstable: for all values of σ, the complexity is entirely supported in the region
ϕ > ϕMay. It is natural to ask whether this remains true for γ > 0. To get information on the
stability of equilibria we evaluated the annealed complexity and computed the lower edge of
its support, ϕAa , at fixed positive γ,σ. Given that the annealed complexity is an upper bound to
the quenched complexity, the ϕAa obtained from the annealed calculation is a lower bound to the
corresponding diversity obtained within the quenched calculation (for γ= 0 the two quantities
coincide). The inequality ϕAa > ϕMay thus implies that no linearly stable equilibrium exists for
the given σ,γ.

Figure 7 shows the comparison between ϕAa and ϕMay as a function of σ, for two differ-
ent values of the asymmetry parameter γ. One sees that for the smaller value of γ, all the
equilibria are unstable in the plotted range of σ, while for the larger value of γ there is a
crossing value σsb such that for σ < σsb all equilibria are unstable, while for the larger val-
ues of σ the annealed complexity is non-zero also in a window of diversities corresponding
to linearly-stable equilibria. For the smaller values of γ, it is unclear from this plot whether
such a crossing occurs at much larger values of variability σ; to determine this, we show in
figure 8 the dependence on γ of the inverse of the crossing point σ−1

sb (respectively, σsb), which
is shown to vanish at a threshold value γc = 0.373 (respectively, at γ= 1): we can therefore
conclude that for 0⩽ γ ⩽ γc, all the uninvadable equilibria are linearly unstable. For γ > γc,
the annealed complexity suggests that some (exponentially many in S) linearly stable equilib-
ria are present at large-enough σ; in the symmetric case γ= 1, one has σsb = σc, and therefore
for all σ in the multiple equilibria phase the annealed calculation predicts that some stable
equilibria are present. For all γ > γc, however, the stable equilibria are much more rare with
respect to the most numerous ones (corresponding to the maximum value of the complexity),
which are always unstable. An illustration of this in given in figure 9(left). We remark that
the fact that for γ < γc all equilibria are unstable remains true even if a quenched calculation
of the complexity is performed. On the other hand, the behaviour for γ > γc obtained within
the annealed framework is robust only in case the low-ϕ branch of the quenched complexity
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Figure 7. Comparison between theminimal diversityϕAa at which the annealed complex-
ity is positive and the diversity ϕMay above which equilibria are unstable, for asymmetry
γ= 0.3 (left) and γ= 0.8 (right). For γ= 0.8, the curves cross at σsb = 1.279.

Figure 8. Dependence on γ of the crossing point σ−1
sb and its inverse. The curves vanish

at γc = 0.373 and γ= 1, respectively. For γ < γc, for certain all uninvadable equilibria
are linearly unstable.

coincides with the annealed one, as it happens for γ= 0. It is also possible that the quenched
complexity curve in this region has to be obtained beyond the replica symmetry assumptions
considered in this work. This is suggested by the symmetric γ= 1 case, where marginally
stable equilibria are expected to dominate. We leave these checks to future work.

6.2. Topology trivialization transition for general γ

We have shown above that for γ= 0 the total complexity Σtot
σ =Σ

(Q)
σ (ϕmax) vanishes quadrat-

ically when σ → σ+
c . We now show that this behaviour extends to γ ̸= 0 within the annealed

framework; on the other hand, if in the vicinity of σc the maximum of the complexity curve (as
a function of ϕ) lies in a regime in which the quenched calculation has to be employed (as it
happens for γ= 0), then we cannot exclude that the total complexity vanishes with a different
power. In fact, our results suggest that this is the case for general γ ̸= 0, as we argue below.

We consider the total variation (93), and focus first on the case γ ̸= 1. The contribution to
the total variation given by the determinants reads:

∂σd(ϕ) =


2γϕσ2+

√
1−4γϕσ2−1

2γσ3 if ϕ < 1
σ2(1+γ)2

ϕ
σ

(
1− 1

σ2ϕ(1+γ)

)
if ϕ > 1

σ2(1+γ)2

. (97)
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At the critical point σ = σc =
√
2(1+ γ)−1, the diversitymaximizing the complexity isϕmax =

ϕMay = [σ(1+ γ)]−2. The derivative above is continuous at this point, and equals to:

∂σd(ϕ)
∣∣∣
σc,ϕmax

=−γ(1+ γ)

2
√
2

. (98)

To have a quadratic behaviour of the total complexity, this term should be cancelled by the
derivative of the term coming from the distribution of the forces. This is indeed what happens
if for σ ∼ σ+

c the complexity at ϕmax is obtained within the annealed framework, and thus the
contribution from the distribution of the forces is given by p1(x) in (45). Then, for κ= 1

∂σp1(x) =
1

σ3q21

[
(1−µm)2

(
q1 −

γm2

1+ γ

)
− 2(1−µm)q1

(
p+

m
1+ γ

)
+ ξ1q1

]
− 1

σ
+

1
σ3(1+ γ)

. (99)

This expression has to be evaluated at the solution of the annealed saddle point equations; at
σc, one finds m= µ−1 =−(1+ γ)p and q1 = (1+ γ)2ξ1, which implies that

∂σp1

∣∣∣
σc,ϕmax

=
γ(1+ γ)

2
√
2

. (100)

Therefore, the two contributions cancel exactly within the annealed approximation. On the
other hand, if the total complexity at σ ∼ σ+

c is quenched, one needs to make use of the expres-
sion (40) and to determine:

∂σp̄(x) =−2
(κ−µm)
σ3(1+ γ)

m(q1 − q0 + zγ)
(q1 − q0)2

− 2
(κ−µm)

σ3

p
(q1 − q0)

+
γ

σ3(1+ γ)

z2(q1 + q0)
(q1 − q0)3

+
ξ1

σ3(q1 − q0)
+

q0(ξ0 − ξ1)

σ3(q1 − q0)2

+
1

σ3(1+ γ)

[
1+

2q0z
(q1 − q0)2

]
+

1
σ3

(κ−µm)2

q1 − q0
− 1

σ
. (101)

To evaluate this expression, one should solve the quenched saddle point equations for gen-
eral γ at σ = σ+

c . However, by assuming the continuity of the single-replica order parameters
m,p,q1, ξ1 at σc, one can plug the corresponding values obtained from the annealed equations
valid at σ = σ−

c . By doing that, we see that the term (101) cancels exactly the contribution of
the determinant provided that:

z
(1+ γ)(q1 − q0)2

(
γz(q1 + q0)
2(q1 − q0)

+ q0

)
= 0. (102)

which has two possible solutions for z: z= 0, or z= 2q0(q1 − q0)/[γ(q1 + q0)]. Both these
solutions however can be shown to be incompatible with the quenched self-consistent
equations7. Therefore, either for γ ̸= 0 the total complexity at σ ∼ σ+

c is annealed (and then
it vanishes quadratically as σ → σc), or it is quenched, in which case one should expect a
different power law since the linear contribution is not vanishing.

7 The condition z= 0 together with the other conditions on the single-replica order parameters would imply β1β2 −
β2
3 = 0. For γ ̸= 0 one sees that this is not an admissible solution of the quenched saddle point equations obtained

in the limit β1β2 −β2
3 → 0: in particular, the limiting equation for z is compatible with z= 0 only for q1 = 0 = q0,

which one knows from the annealed solution not to be the correct values at σc. On the other hand, the second choice
for z is also not compatible, as it gives rise to complex values of the conjugate parameters.
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The case γ= 1 is special since the derivative (97) for ϕ < ϕMay converges to (98) for σ →
σ+
c , with an additional term scaling as (σ−σc)

1/2 coming from the square root in (97), whose
argument vanishes when ϕ = ϕMay,σ = σc. Therefore, the total complexity is likely to have a
non-analytic behaviour at the transition to the unique equilibrium phase, since the determinant
has a contribution of the form d(ϕmax)∼ (σ−σc)

3/2.

6.3. The symmetric case: comparison with the replica calculation

In the symmetric case γ= 1, the model is conservative and thus one can investigate the struc-
ture of the potential landscape associated to it by means of standard techniques developed
within the theory of spin glasses. The potential landscape L[N⃗] is defined by:

Fi(N⃗) =−∂L[N⃗]
∂Ni

, L[N⃗] =−
S∑

i=1

(
κiNi −

N2
i

2

)
+

1
2

S∑
i,j=1

αijNiNj. (103)

When the landscape has a simple structure (which in the language of replica theory corres-
ponds to the so called 1-step replica symmetry-breaking—1RSB ansatz) the complexity of
certain of the landscape local minima can be obtained from the Lagrange transform of a gen-
eralized free-energy function, which is related to the partition function of several copies (or
real replicas) of the systemweakly coupled to each others [14]. The outcome of the calculation
is a curve Σ1RSB(l) giving the complexity of the typical (i.e. most numerous) local minima at
fixed value l= limS→∞ S−1L[N∗] of the potential landscape (103).We recall the essential steps
of this procedure, which is known as the Monasson method, in appendix F. In figure 9(right),
we plot the resulting Monasson complexity as a function of the diversity ϕ of the minima
contributing to it, in order to compare with Kac–Rice annealed complexity. One sees that the
curveΣ1RSB(ϕ) is contributed by two branches, one of which (the red dashed branch) has to be
discarded, as we motivate in appendix F. This is confirmed by the fact that it gives a positive
complexity in a range of diversity where the annealed complexity vanishes—given that the
annealed complexity is an upper bound to the quenched complexity, no local minima can exist
in the region in which it is negative. The second branch (green) gives a positive complexity
in the region of diversity corresponding to stable equilibria (ϕ < ϕMay); this is consistent with
the fact that the replica method allows to find stable local minima and not unstable saddles
in the energy landscape. One sees moreover that Σ1RSB(ϕ) not only is quite smaller than the
annealed complexity (which might be motivated by the fact that the annealed calculation is not
correct and overestimates the complexity), but has a quite different shape. This is due to the fact
that the Kac–Rice complexity counts the dominating minima at fixed diversity, while Σ1RSB

counts the dominating minima at fixed value of the potential: the two different constraints
imposed in the complexity calculation are not interchangeable. The curve Σ1RSB(ϕ) vanishes
at ϕ= 0.2494, which corresponds to the 1RSB prediction of the diversity of the equilibrium
local minima, i.e. of the ground state. This value is slightly smaller than ϕMay = 0.25, the value
corresponding to marginally stable minima which are expected to be the equilibrium ones for
γ= 1 and σ > σc: this discrepancy is due to the fact that a different (full-RSB) equilibrium
calculation is required to capture the correct diversity. However, one sees that the calculation
performed within the 1RSB framework is quantitatively quite accurate. Conversely, the max-
imum of Σ1RSB(ϕ) intercepts the annealed curve at the point where the stable branch turns
into the unstable one: this suggests that in that range of diversities, the annealed calculation is
correct, in the sense that it matches with the quenched one.
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Figure 9. Left. Annealed complexity of equilibria for γ= 0.6 and σ = 8> σc. A small
part of the curve is contributed by stable equilibria with ϕ < ϕMay, see inset. Right.
Comparison between the Kac–Rice annealed complexity and the complexity of local
minima obtained with the replica calculation, for the symmetric case γ= 1 and σ =
1> σc.

7. Conclusions

In this work, we have determined the quenched complexity of equilibria of the generalized
Lotka–Volterra equations with random, asymmetric interactions between the species. The
quenched complexity is defined in terms of order parameters satisfying coupled self-consistent
equations. We have derived such self-consistent equations for arbitrary values of the parameter
γ, which controls the asymmetry in the statistics of the interactions. We have then discussed
in details the strategy to solve these equations in the case of totally uncorrelated interactions,
corresponding to γ= 0, and we have presented the results for the associated complexity.

Our results confirm the expectation that the typical number of equilibria is in general much
smaller than the average number, that therefore a quenched calculation is necessary: indeed,
the annealed complexity gives a non-tight upper bound to the quenched complexity, at least for
most values of diversities of the equilibria (for general σ in the multiple equilibria phase, only
the number of equilibria at small diversity is correctly captured by the annealed approxima-
tion). For values of variability σ quite close to the transition to the unique equilibrium phase,
σ ∼ σ+

c , the annealed approximation fails dramatically, as it predicts dominating equilibria
having a diversity for which typically no equilibrium exists, meaning that the corresponding
diversity lies outside of the support of the quenched complexity. This interesting phenomeno-
logy has been found in other random models, for example in problems of portfolio optimiza-
tion [53]. The comparison between the quenched and the annealed results for γ= 0 also shows
that the annealed approximation overestimates the diversity of the most numerous equilibria
and thus their linear instability, which is directly related to the diversity. On the other hand,
it gives a smaller value of the average abundance and of the self-overlap of the equilibria at
given diversity.

For uncorrelated couplings (γ= 0), we have compared our results with those obtained pre-
viously by means of the cavity method. We have shown that within the multiple equilibria
phase, the cavity calculation captures a symmetry point for the saddle-point equations as a
function of diversity, where quenched and annealed complexities become equal. The equilib-
ria at the corresponding diversity are however sub-dominant for all values of σ, since they
are exponentially less numerous than the typical ones (those at the diversity that maximizes
the quenched complexity). Through the complexity calculation, we also got a more resolved
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description of the transition to the unbounded phase. In the case of symmetric interactions
(γ= 1), we have compared the annealed complexity obtained with the Kac–Rice method with
the calculation of the complexity obtained with the so called Monasson method. This method
allows one to obtain the number of stable minima of the potential landscape as a function of the
value of the potential itself. We have shown that the equilibria identified with the two different
approaches are not the same.

We have analysed how the total complexity of equilibria vanishes at the value of vari-
ability σc corresponding to the topology trivialization transition, i.e. to the transition to the
unique equilibrium phase. We have shown explicitly that for γ= 0 both the quenched and
annealed complexity vanish asΣσ ∼ (σ−σc)

2, an exponent previously found in other models
studied within the annealed approximation [18, 24, 52]. Within the annealed approximation,
this remains true for γ ̸= 0; however, we provide evidence of the fact that for γ ̸= 0, the total
complexity, if quenched, should vanish with a different power. Solving the quenched self-
consistent equations for arbitrary γ will allow us to address these points in a thorough way:
the corresponding analysis is ongoing.

There are several extensions of this work that we are leaving to future work as well. For
instance, the generalization to randomly distributed carrying capacities κ→ κi is straightfor-
ward: in the context of our calculation, it would just require to introduce additional order
parameters defined by ka = limS→1∞ S−1(N⃗a · κ⃗)where κ⃗= (κ1, . . . ,κS). In the case of homo-
geneous κi, this order parameter reduces to the average abundancema. It would also be natural
to generalize this calculation to different types of interaction matrices, for instance imposing a
fixed sign to the couplings: for purely competitive interactions, the number of stable equilibria
has been explored in [12] through a sampling algorithm. Considering a block structure of the
matrix [54] or some sparsity in its entries [33, 55] are also interesting directions to explore.
We also remark that the stability of the symmetric assumption on the order parameters that
we have made to perform this calculation should also be checked. This amounts to check that
the variational manifold chosen to determine the solutions of the saddle point equations is
stable; this analysis is particularly interesting in the case of asymmetric couplings, where no
thermodynamic analogy can be exploited.

Let us conclude with a few comments on the implications of our results for the dynamics
of the system. In the case of uncorrelated interactions, it follows from our solution that all the
equilibria in the multiple equilibria phase are linearly unstable. One may thus expect a com-
plicated dynamical evolution, with the system that continuously approaches an equilibrium
and then is driven away along the directions of instability. For larger γ and in a certain range
of σ, the annealed calculation predicts a very small fraction of stable equilibria having positive
complexity: determining whether their complexity is non-zero also in the quenched formalism
and, in that case, assessing their role in the dynamics is another interesting question. Recent
results also suggest that a relevant role in the dynamics is played by invadable equilibria: the
calculation of the corresponding complexity is ongoing.
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Appendix A. The Kac–Rice calculation of the moments: details

In this appendix, we derive the explicit expressions of the various terms appearing in
equation (16), under the replica symmetric assumptions (30).

A.1. Joint distribution of the forces

We begin by computing the joint distributionP(n)
N (f) of the S-dimensional vectors F⃗a evaluated

at f⃗ a, and by showing explicitly that it depends on the order parameters in (17). From (5) we
see that the component Fai are linear combinations of the Gaussian variables aij, with average:

⟨Fai ⟩= κ− µ

S

S∑
j=1

Naj −Na
i = (κ−µma)−Na

i . (A.1)

and covariance matrix:

σ2

S
Ĉabij = ⟨Fai Fbj ⟩− ⟨Fai ⟩⟨Fbj ⟩=

σ2

S

(
N⃗a · N⃗bδij+ γNbi N

a
j

)
. (A.2)

Therefore, it holds

P
(n)
N (f) =

e−
S

2σ2 (f−⟨F⟩)T Ĉ−1 (f−⟨F⟩)√(
2πσ2

S

)Sn
det Ĉ

. (A.3)

In addition to N= (N⃗1, . . . , N⃗n) and f= (⃗ f1, . . . ,⃗ fn), it is convenient to introduce:

wN =

∑
a̸=1

N⃗a, . . . ,
∑
a̸=n

N⃗a

 , wf =

∑
a̸=1

f⃗ a, . . . ,
∑
a̸=n

f⃗ a

 ,

v=
(
1⃗, . . . , 1⃗

)
, m=

(
m⃗1, . . . , m⃗n

)
,

(A.4)

with the S-dimensional vectors 1⃗= (1,1, . . . ,1) and m⃗a = ma1⃗. These vectors are relevant as
they form a closed set under the action of the covariance matrix (A.2). In particular, under the
assumptions (30) and using that the equilibrium condition imposes zaa = 0, we find:

ĈN= (1+ γ)[q0wN+ q1N]

Ĉf= q0wf+ q1f+ γ zwN

ĈwN = (1+ γ)[q1 +(n− 2)q0]wN+(1+ γ)(n− 1)q0N

Ĉwf = [q1 +(n− 2)q0]wf+ γ (n− 2)zwN+(n− 1)q0f+ γ (n− 1)zN

Ĉv= [q1 +(n− 1)q0]v+ γmwN+ γmN.

(A.5)

Notice that the matrix elements of Ĉ on these vectors are only a function of the order para-
meters (17). Moreover, the quadratic form at the exponent in (A.3) can be rewritten as a linear
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combination of matrix elements of Ĉ−1 on this restricted set of vectors: therefore, the expo-
nent in (A.3) is also a function of the order parameters only, which is determined by inverting
the action of the matrix Ĉ on the subset spanned by these vectors. Introducing an orthonor-
mal basis for this subspace and performing the inversion of the matrix Ĉ projected into the
subspace (see [25, 56] for similar calculations), we obtain:

(f−⟨F⟩)T Ĉ−1 (f−⟨F⟩) = n
1+ γ

Un(x)
(q1 − q0)2 [q1 +(n− 1)q0]2

, (A.6)

with Un given in (33). The determinant in the denominator of (A.3) is dominated by the diag-
onal part of the covariance matrix, and under the assumptions (30):

detĈ= eS log[S
n(q1−q0)

n−1(q1+(n−1)q0)]+o(S). (A.7)

Combining these terms, we recover (32).

A.2. Joint expectation of the linear stability matrices

We now focus on the joint, conditional expectation value (15). The product is over n determ-
inants (8) of size Nϕ ×Nϕ taking the form:

Ha
ij =

(
∂Fi(N⃗a)
∂Na

j

)
=−

(
σ
√
ϕ√
Sϕ

aij+
µ

S
+ δij

)
i, j ∈ Ia. (A.8)

Therefore, the matrices Ha
ij of different replicas a have the same statistic: they only differ by

the components that are selected by the index sets Ia. We first recall how to deal with the
expectation value in case of a single replica n= 1: this calculation is a slight variation of that
presented in [19, 22]. We then generalize to arbitrary values of n, as it is necessary for the
quenched calculation.

When n= 1, a single configuration vector N⃗ is present, with Sϕ components Ni∈I that are
different from zero. As recalled in section 3.3, the corresponding matrix (A.8) prior to con-
ditioning is a random matrix of the real elliptic type, with variance σ2ϕ and with asymmetry
parameter γ. The third term in (A.8) only provides a global shift. The asymptotic eigenvalue
density of (A.8) reads:

ρ(λ) =
1

πσ2ϕ(1− γ2)
1λ∈S̃σ,ϕ,γ

, S̃σ,ϕ,γ =

{
(ℜλ+ 1)2

σ2ϕ(1+ γ)2
+

(ℑλ)2

σ2ϕ(1− γ)2
⩽ 1

}
. (A.9)

A rather straightforward exercise in Gaussian conditioning shows that conditioning to the event
F⃗(N⃗) = f⃗ modifies very weakly the statistics of the matrix â. Indeed, the event F⃗(N⃗) = f⃗ is
equivalent to {

κ−Ni − µ
S

∑
j∈INj−

σ√
S

∑
j∈I aijNj = 0 if i ∈ I

κ− fi− µ
S

∑
j∈INj−

σ√
S

∑
j∈I aijNj = 0 if i /∈ I,

(A.10)

where we used thatNi /∈I = 0 and fi∈I = 0. From (A.10) it follows that conditioning to F⃗(N⃗) = f⃗
amounts to fixing the action of the S× S random matrix â on the S-dimensional vector N⃗. If
one rotates the matrix â in such a way that the components are expressed in a new orthonormal

basis e⃗i such that e⃗1 = N⃗/
√
N⃗ · N⃗ and e⃗i ̸=1 are a completion of the space, then the event (A.10)

corresponds to fixing to a deterministic vector the first column of the rotated matrix â, with
components ak1 for k⩾ 1. For γ ̸= 0, because of the non-zero correlations, also the statistics of
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the matrix element a1k with k> 1 will be affected; in particular, the average of these compon-
ents is modified and their variance is reduced by a factor 1− γ2 (in the symmetric case γ= 1,
the variance of these entries vanishes as well, consistently with the fact that a1k = ak1). We
recall that the determinant (15) is that of the projection of the matrix on the Sϕ × Sϕ dimen-
sional subspace spanned by the species that are present. The vector e⃗1 belongs to this subspace.
Therefore, the relevant block of the matrix â contributing to (A.8) will still have a special line
and column (those corresponding to the basis vector e⃗1), with entries whose statistics is per-
turbed with respect to that of the original, unconditioned elliptic matrix. This perturbation is
however of finite rank, and thus it does not affect the asymptotic density ρ(λ) to leading order
in S.

We now argue that the density (A.9) is the only quantity needed to compute the conditional
expectation value of the determinant to leading order in S. To this aim, one needs to recall that
the convergence of the empirical measures µM of real elliptic matrices happens on a scale that
is quadratic in the size M of the matrix. More precisely, the empirical spectral measures µM
satisfy a large deviation principle with rateM2, meaning that for largeM the probability PM[µ]
of observing a spectral measure µ scales as PM[µ]∼ e−M2 I[µ]+o(M2), where the rate function
I[µ] is minimized precisely by the asymptotic measureµwith density ρ(λ) in (A.9). For the real
elliptic ensemble, the rate functional I[µ] has been derived for generic γ in [22] (see section 3
of the supplementary information), generalizing the result for the special case γ= 0 given in
[57]. TheM2-scaling of the large deviation principle is quite generic in random matrix theory
[58, 59], and it is essentially determined by the scaling of the number of independent entries
in the matrix: small-rank perturbations of the statistics of the matrix such as those described
above are not sufficient to modify the speed of convergence of the large deviation principle
nor, as pointed out above, the minimizer of the rate functional I[µ]. Keeping this in mind, it is
then straightforward to write the conditional expectation value of the determinant of H+ I as
an expectation over the spectral measure µ(λ) of the matrix, as:〈

|det(H+ I)|
∣∣∣ F⃗(N⃗) = f⃗

〉
=

ˆ
Dµ P̃Sϕ[µ] e

Sϕ
´
dµ(λ) log |λ|+o(S), (A.11)

where P̃Sϕ[µ] is the probability of observing an empirical measure µ for matrices with the
same statistics as the conditional matrix H+ I. Using that P̃Sϕ[µ]∼ e−S

2ϕ2I[µ]+o(S2) and that
µ⃗(λ)minimizes the rate functional I[µ], via a saddle point calculation in the space of measures
we obtain: 〈

|det(H+ I)|
∣∣∣ F⃗(N⃗) = f⃗

〉
=

ˆ
Dµ e−S2ϕ2I[µ]+o(S2)+Sϕ

´
dµ(λ) log |λ|+o(S)

= eSϕ
´
dλρ⃗(λ) log |λ|+o(S),

(A.12)

where the last equality follows from the fact that P̃Sϕ[µ] is normalized to one, implying that
the linear-order term in S at the exponent of P̃Sϕ[µ]must vanish as well when computed at the
saddle point µ⃗. These identities imply that:

D
(n=1)

N⃗
=
〈
|det(H)|

∣∣∣ F⃗(N⃗) = f⃗
〉
= eSϕ

´ 1
−1

dx
π 2
´√1−x2

0 dy log
√
[σ

√
ϕ(1+γ)x+1]

2
+σ2ϕ(1−γ)y2 .

(A.13)

We now discuss how to generalise this result to the case n> 1: the arguments in this case
follow closely those presented in [25, 56], which we summarize here very briefly. For n> 1,
one has to compute the joint expectation of the product of n matrices that are correlated with
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each others, due to the fact that the Sϕ × Sϕ matrices associated to different replicas share a
finite fraction of lines and columns. Following the same line of reasoning as above, we can set:

〈
n∏

a=1

|det(Ha+ I)|
∣∣∣ F(N) = f

〉
=

ˆ n∏
a=1

Dµa P̃Sϕ[{µa}] eSϕ
∑n

a=1

´
dµa(λ) log |λ|+o(S),

(A.14)

where now P̃Sϕ[{µa}] is the joint distribution of the spectral measures of the nmatrices, which
must exhibit the same large-S scaling as its reduced distribution, P̃Sϕ[{µa}]∼ O(eS

2
); there-

fore, the expression (A.14) can again be computed in a saddle point approximation. The saddle-
point solutions are determined just by the minimization of the term scaling quadratically with
S: as such, they must coincide with the marginals of the joint distribution in the space of meas-
ures (see the argument around equation (43) in [25]). Thus, correlations between the matrices
are not relevant for computing (A.14) to leading exponential order in S: what remains to
determine is just the asymptotic eigenvalue density of each conditional matrix Ha. We remark
that eachHa has to be conditioned to F⃗(N⃗b) = f⃗ b for all b= 1, . . . ,n. Following the same argu-
ments as above, one sees that this conditioning amounts again to a finite-rank perturbation to
the original elliptic ensemble statistics: for n> 1, the conditional matrices will contain n lines
and n columns having a modified statistics with respect to the original one. These are the lines

and columns corresponding to the subspace spanned by the unit vectors e⃗b = N⃗b/
√
N⃗b · N⃗b.

The presence of these special lines does not affect the bulk of the density of states (provided
that the number of special lines and columns is not of O(S)). We can therefore conclude that

D
(n)

N⃗
= e

Snϕ
´ 1
−1

dx
π

´√1−x2

0 dy log
{
[σ

√
ϕ(1+γ)x+1]

2
+σ2ϕ(1−γ)2y2

}
= eSnd(ϕ). (A.15)

A.3. Explicit expression for the double integral

The double integral in (A.15) can be evaluated explicitly. For any γ ̸=±1, performing the
inner integration we get:

d(ϕ) =
ϕ

π

ˆ 1

−1
dx

{
2

σ
√
ϕ(1− γ)

[1+σ
√

ϕ(1+ γ)x]arctan

[
σ
√
ϕ(1− γ)

√
1− x2

1+σ
√
ϕ(1+ γ)x

]}

+
ϕ

π

ˆ 1

−1
dx

{√
1− x2 log

[(
1+σ

√
ϕ(1+ γ)x

)2
+σ2ϕ(1− γ)2(1− x2)

]}
− 2

ϕ

π

ˆ 1

−1
dx
√

1− x2. (A.16)

We discuss some special values of γ first, and then the result for general γ. We set A=
σ
√
ϕ(1+ γ) and B= σ

√
ϕ(1− γ) to simplify the notation.

Case γ= 0. The argument of the logarithm in (A.16) is a quadratic function of x except for
γ= 0. In this case we have A= σ

√
ϕ= B and

d(ϕ) =
ϕ

π

ˆ 1

−1
dx

{
2(1+Ax)

A
arctan

(
A
√

1− x2

1+Ax

)
− 2
√

1− x2 +
√

1− x2 log
[
1+A2 + 2Ax

]}
.

(A.17)
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Both the first and the last integrals have a different behaviour depending on whether A> 1 or
A< 1. The first integral gives:

I1 ≡
ϕ

π

ˆ 1

−1
dx

2(1+Ax)
A

arctan

(
A
√
1− x2

1+Ax

)
=

ϕ

π

{
π
(
1− A2

4

)
if 0< A< 1

π
2

(
1+ 1

2A2

)
if A> 1

. (A.18)

For x ∈ [−1,1] the argument of the logarithm in (A.17) is always non-negative, since the root
x∗ =−(1+A2)/2A is always smaller than −1. The singularity is hit for A= 1, when x∗ =
−1. The corresponding integral has two different behaviours for A< 1 and A> 1, because it
involves functions having a branch-cut at A= 1. One finds explicitly:

I3 ≡
ϕ

π

ˆ 1

−1
dx
√

1− x2 log
[
1+A2 + 2Ax

]
=

ϕ

π

{
πA2

4 if 0< A< 1
π
4

(
1
A2 + 2logA2

)
if A> 1

. (A.19)

It is convenient to obtain this result integrating by parts, using that for z< 1:

F(z) =
ˆ z

−1
dx
√

1− x2 =
π

4
+

1
2

(
z
√

1− z2 + arcsinz
)
. (A.20)

Finally

I2 ≡−2
ϕ

π

ˆ 1

−1
dx
√

1− x2 =−ϕ. (A.21)

Combining these formulas and using that A= σ
√
ϕ we find for γ= 0:

d(ϕ) =

{
0 if 0< σ

√
ϕ < 1

1
2σ2 − ϕ

2 +
ϕ
2 log(σ2ϕ) if σ

√
ϕ > 1.

(A.22)

Case γ= 1. In this caseB= 0 and the integrand in (A.16) is singular. Plugging γ= 1 directly
in (A.15) we find:

d(ϕ) =
2ϕ
π

ˆ 1

−1
dx
√

1− x2log |1+Ax|= 2ϕ
π

ˆ 1

−1
dx
√

1− x2 log |1+Ax|. (A.23)

Again, the integral of the logarithm has a different behaviour depending on whether A> 1 or
A< 1. In particular,

d(ϕ) = ϕ

{
1
A2 − log2− 1

2 −
√

1−A2

A2 + log
(
1+

√
1−A2

)
if 0< A< 1

logA+ 1
A2 − log2− 1

2 if A> 1
. (A.24)

Using that A= 2σ
√
ϕ we get

d(ϕ) = ϕ

 1
4σ2ϕ − log2− 1

2 −
√

1−4σ2ϕ

4σ2ϕ + log
(
1+

√
1− 4σ2ϕ

)
if 0< ϕ < 1

4σ2

log(σ
√
ϕ)+ 1

4σ2ϕ − 1
2 if ϕ > 1

4σ2 .
(A.25)
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Case γ =−1. In this case A= 0 and it is convenient to re-write (A.15) as:

d(ϕ) =
ϕ

π

ˆ 1

−1
dy
√

1− y2 log[1+B2y2]

= ϕ log[1+
√
B2 + 1]− ϕ

2B2

(
2− 2

√
B2 + 1+B2(1+ log(4))

) (A.26)

This integral has the same expression for all values of B=−2σ
√
ϕ.

Case of general γ. In this case, it is convenient to compute the integral by expanding the
integrand in (A.16) in powers of a= σ

√
ϕ, integrate term by term the expansion and then

re-sum it. The final result is

d=

{
1

4γσ2

(
1−
√

1− 4γσ2ϕ
)
+ϕ log

(
1+
√

1− 4γσ2ϕ
)
−ϕ

( 1
2 + log2

)
σ
√
ϕ(1+ γ)< 1

1
2σ2

1
1+γ − ϕ

2 + ϕ
2 log(σ2ϕ) σ

√
ϕ(1+ γ)> 1

(A.27)

which coincided with (34) in the main text. We see that this is consistent with the special cases
discussed above; in particular, for γ =−1 only the first regime occurs for ϕ ∈ [0,1].

A.4. The phase space volume term

Let us now come to the computation of the phase space volume term (23).We begin by noticing
that the introduction of the conjugate parameters allows us to decouple the various species and
to set:

Vn(x, x̂) =

 ∑
τ a=0,1

e−ϕ̂a [τ
a]2
ˆ n∏

a=1

dNa df a j(Na, f a)

S

, (A.28)

where

j(Na, f a) = e−
∑n

a=1(m̂a N
a+p̂a f

a)−
∑n

a,b=1(̂zab N
af b+q̂ab N

aNb+ξ̂ab f
af b)

×
∏

a:τ a=1

θ(Na)δ( f a)
∏

a:τ a=0

δ(Na)θ(−f a). (A.29)

For ϕ̂a ≡ ϕ̂, this expression depends on τ a only through the number k ∈ {0, . . . ,n} of entries
that are non-zero. Once k is fixed, we can introduce y= (N1, . . . ,Nk, f 1, . . . , fn−k) and thematrix
and vectors:

Ak[x̂] =


k×k

Q̂ −Ẑ

−Ẑ
(n−k)×(n−k)

X̂

 , µk[x̂] =

 k×1
m̂

(n−k)×1

−p̂

 , (A.30)

with

Q̂ab = δab 2q̂aa+(1− δab)q̂ab, Ẑab = ẑab, X̂ab = δab 2ξ̂aa+(1− δab)ξ̂ab. (A.31)

Then:

Vn(x, x̂) =

(
n∑

k=0

(
n
k

)
e−kϕ̂

ˆ
dy

n∏
a=1

θ(ya)exp

{
−1

2
yT ·Ak[x̂] · y−µk[x̂] · y

})S

. (A.32)
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To illustrate how to simplify this term, let us consider first the case k= n. In the RS assump-
tions, Q̂ab = q̂0 + δab(2q̂1 − q̂0) and m̂a = m̂, implying:

ˆ ∞

0

n∏
a=1

dNae−
1
2

∑
a,b N

aQ̂abN
b−

∑
a m̂aN

a

=

ˆ ∞

0

n∏
a=1

dNa e−
q̂0
2 (

∑n
a=1 N

a)2 e−
∑n

a=1
(2̂q1−q̂0)

2
[N a]2−

∑n
a=1 m̂N

a

.

(A.33)

Assuming that q̂0 < 0 and (2q̂1 − q̂0)> 0, and using the Gaussian identity:

e−
q̂0
2 (

∑n
a=1 N

a)
2

=
1√

2π [−q̂0]

ˆ
dze−

z2

2[−q̂0]
+z

∑n
a=1 N

a

, (A.34)

we see that
ˆ ∞

0

n∏
a=1

dNae−
1
2

∑
a,b N

aQ̂abN
b−

∑
a m̂aN

a

=

ˆ ∞

−∞

dz√
2π [−q̂0]

e
−(z−m̂)2

2[−q̂0] [g(z;2q̂1 − q̂0)]
n, (A.35)

where we introduced the function

g(u; â) = e
u2

2̂a

√
π

2â
Erfc

(
u√
2â

)
. (A.36)

This expression can be easily expanded in powers of n. For k generic and within the RS
ansatz, we can proceed analogously. The relevant integral now reads:

ˆ ∞

0

k∏
a=1

dNa
n∏

b=k+1

dgb e−
1
2 Ôk(N

a,gb)
k∏

a=1

e−
(2̂q1−q̂0)

2 [N a]2−m̂aN a
n∏

b=k+1

e−
(2ξ̂1−ξ̂0)

2 [gb]2+p̂bgb (A.37)

with the shorthand notation:

Ôk(N
a,gb) = q̂0

(
k∑

a=1

Na

)2

+ ξ̂0

(
n∑

a=k+1

ga
)2

− 2ẑ

(
k∑

a=1

Na

)(
n∑

b=k+1

gb
)
. (A.38)

Assuming q̂0, ξ̂0 < 0, we can write:

e−
1
2 Ôk(N

a,gb) =

ˆ
du1du2

2π
√

det(Â)
e−

1
2 (u1,u2)Â

−1(u1,u2)
T

k∏
a=1

eu1N
a

n∏
b=k+1

e−u2g
b

, (A.39)

where we have introduced the 2× 2 matrix

Â=

(
−q̂0 −ẑ
−ẑ −ξ̂0

)
, Â−1 =

1

q̂0ξ̂0 − ẑ2

(
−ξ̂0 ẑ
ẑ −q̂0

)
(A.40)

and assumed that it is positive-definite. Performing the Gaussian integrations under the
assumptions 2q̂1 − q̂0,2ξ̂1 − ξ̂0 > 0, we find that (A.37) is equivalent to:
ˆ

du1du2

2π
√

det(Â)
e−

1
2 (u1,u2)Â

−1(u1,u2)
T

[g(m̂− u1;2q̂1 − q̂0)]
k[g(−p̂+ u2;2ξ̂1 − ξ̂0)]

n−k. (A.41)
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Finally, performing the sum over k we see that we can write the quantity inside the square
brackets in (A.32) as:

Vn =

ˆ du1du2

2π
√

det(Â)
e−

1
2 (u1,u2)Â

−1(u1,u2)
T
(
e−ϕ̂g(m̂− u1;2q̂1 − q̂0)+ g(−p̂+ u2;2ξ̂1 − ξ̂0)

)nS .
(A.42)

Expanding to linear order in n we get

Vn(x, x̂) = eSn
¯J(x̂)+O(Sn2), (A.43)

with J̄(x̂) given in (41). For n= 1, the above expression reduces to:

V1 =

ˆ du1du2

2π
√

det(Â)
e−

1
2 (u1,u2)Â

−1(u1,u2)
T

e−ϕ̂g(m̂− u1;2q̂1 − q̂0)+ g(−p̂+ u2;2ξ̂1 − ξ̂0)

S

= eSJ1(x̂),

(A.44)

where the expression for J1(x̂) in (46) is obtained replacing the functions g with their integral
representation, and exchanging the order of integration. We stress that all these expressions
are obtained under the hypothesis that:

q̂0 < 0, ξ̂0 < 0, q̂0ξ̂0 − ẑ2 > 0, 2q̂1 − q̂0 > 0, 2ξ̂1 − ξ̂0 > 0. (A.45)

Appendix B. The saddle-point equations for general γ

In this appendix, we derive the saddle-point equations for the order parameters x, x̂ for generic
values of γ.

B.1. The quenched saddle-point equations for general γ

The first set of equations x̂= F2[x] is obtained differentiating Ā(x, x̂,ϕ) with respect to the
order parameters x. The corresponding equations read:

p̂=− κ−µm
σ2(q1 − q0)

,

ξ̂1 =
q1 − 2q0

2σ2(q1 − q0)2
,

ξ̂0 =− q0
σ2(q1 − q0)2

,

m̂=− µ(κ−µm)
σ2(q1 − q0)

− (κ−µm)
(γ+ 1)σ2(q1 − q0)

+
µm

(γ+ 1)σ2(q1 − q0)

+
µp

σ2(q1 − q0)
− γ

1+ γ

(κ− 2µm)z
σ2(q1 − q0)2

,

ẑ=
γm(κ−µm)

(γ+ 1)σ2(q1 − q0)2
− γz(q1 + q0)

(γ+ 1)σ2(q1 − q0)3
− q0

(γ+ 1)σ2(q1 − q0)2
, (B.1)

which gives immediately:√
2ξ̂1 − ξ̂0 =

1√
σ2(q1 − q0)

,
p̂√

2ξ̂1 − ξ̂0
=− (κ−µm)√

σ2(q1 − q0)
. (B.2)
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The equations for q̂1 and q̂0 are given by:

q̂1 =− (κ−µm)[m+(γ+ 1)p]
(γ+ 1)σ2(q1 − q0)2

+
2(κ−µm)[m(q1 − q0 + γz)+ p(γ+ 1)(q1 − q0)]

(γ+ 1)σ2(q1 − q0)3

+
q0
(
2q0z− 2γz2

)
(γ+ 1)σ2(q1 − q0)4

− q20(3ξ1 − 2ξ0)
2σ2(q1 − q0)4

− q1q0(ξ0 − 2ξ1)
σ2(q1 − q0)4

− q1[2q0z+ γz2]
(γ+ 1)σ2(q1 − q0)4

− ξ1q
2
1

2σ2(q1 − q0)4
− q0

2(q1 − q0)2
+

1
2(q1 − q0)

− (κ−µm)2

2σ2(q1 − q0)2
,

(B.3)

and

q̂0 =
2(κ−µm)(−m− (γ+ 1)p)

(γ+ 1)σ2(q1 − q0)2
+

4(κ−µm)(m(q1 − q0 + γz)+ (γ+ 1)p(q1 − q0))
(γ+ 1)σ2(q1 − q0)3

+
−2z

(
q21 + γz(2q1 + q0)− q20

)
+ 2(γ+ 1)ξ1q0(q1 − q0)− (γ+ 1)ξ0(q1 − q0)(q1 + q0)

(γ+ 1)σ2(q1 − q0)4

− q0
(q1 − q0)2

− (κ−µm)2

σ2(q1 − q0)2
,

(B.4)

from which one also gets:

2q̂1 − q̂0 =
1

q1 − q0
− ξ1 − ξ0

σ2(q1 − q0)2
+

2z
(γ+ 1)σ2(q1 − q0)2

+
2γz2

(γ+ 1)σ2(q1 − q0)3
. (B.5)

The second set of equations x= F1[x̂] is obtained differentiating Ā(x, x̂,ϕ) with respect to the
conjugate parameters x̂. We set:

Rx̂(u1,u2) = e
(u1−m̂)2

2(2̂q1−q̂0) Erfc

(
m̂− u1√

2(2q̂1 − q̂0)

)
+ eϕ̂

√
2q̂1 − q̂0
2ξ̂1 − ξ̂0

e
(u2−p̂)2

2(2ξ̂1−ξ̂0) Erfc

 −[p̂− u2]√
2(2ξ̂1 − ξ̂0)

 ,

(B.6)

and:

Gx̂(u1,u2) =
1

2π
√
q̂0ξ̂0 − ẑ2

e−
1
2 (u1,u2)Â

−1(u1,u2)
T

, (B.7)

and obtain:

m=

ˆ
duGx̂(u1,u2)

1√
2q̂1 − q̂0

√
2
π − m̂−u1√

2q̂1−q̂0
e

(u1−m̂)2

2(2̂q1−q̂0) Erfc

(
m̂−u1√

2(2q̂1−q̂0)

)
Rx̂(u1,u2)

p=
ˆ

duGx̂(u1,u2)
eϕ̂
√

2q̂1−q̂0
2ξ̂1−ξ̂0√

2ξ̂1 − ξ̂0

−
√

2
π − p̂−u2√

2ξ̂1−ξ̂0
e

(u2−p̂)2

2(2ξ̂1−ξ̂0) Erfc

(
− p̂−u2√

2(2ξ̂1−ξ̂0)

)
Rx̂(u1,u2)

q1 =
ˆ

duGx̂(u1,u2)
1

2q̂1 − q̂0

−
√

2
π

m̂−u1√
2q̂1−q̂0

+
(
1+ (m̂−u1)

2

2q̂1−q̂0

)
e

(u1−m̂)2

2(2̂q1−q̂0) Erfc

(
m̂−u1√

2(2q̂1−q̂0)

)
Rx̂(u1,u2)

ξ1 =

ˆ
duGx̂(u1,u2)

eϕ̂
√

2q̂1−q̂0
2ξ̂1−ξ̂0

2ξ̂1 − ξ̂0

√
2
π

p̂−u2√
2ξ̂1−ξ̂0

+
(
1+ (p̂−u2)

2

2ξ̂1−ξ̂0

)
e

(u2−p̂)2

2(2ξ̂1−ξ̂0) Erfc

(
− p̂−u2√

2(2q̂1−q̂0)

)
Rx̂(u1,u2)

.

(B.8)
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The derivatives with respect to q̂0, ξ̂0, ẑ involve also the Gaussian measure. We obtain:

q0 =
ˆ

duGx̂(u1,u2)


√

2
π

1√
2q̂1−q̂0

− m̂−u1
2q̂1−q̂0

e
(u1−m̂)2

2(2̂q1−q̂0) Erfc

(
m̂−u1√

2(2q̂1−q̂0)

)
Rx̂(u1,u2)


2

ξ0 =

ˆ
duGx̂(u1,u2)

2q̂1 − q̂0
2ξ̂1 − ξ̂0

e2ϕ̂


√

2
π

1√
2ξ̂1−ξ̂0

+ p̂−u2
2ξ̂1−ξ̂0

e
(u2−p̂)2

2(2ξ̂1−ξ̂0) Erfc

(
− p̂−u2√

2(2ξ̂1−ξ̂0)

)
Rx̂(u1,u2)


2

(B.9)

and

z=
ˆ

duGx̂(u1,u2)

√
2
π

1√
2q̂1−q̂0

− m̂−u1
2q̂1−q̂0

e
(u1−m̂)2

2(2̂q1−q̂0) Erfc

(
m̂−u1√

2(2q̂1−q̂0)

)
Rx̂(u1,u2)

×

−
√

2q̂1−q̂0
2ξ̂1−ξ̂0

eϕ̂
√

2
π

1√
2ξ̂1−ξ̂0

−
√

2q̂1−q̂0
2ξ̂1−ξ̂0

eϕ̂ p̂−u2
2ξ̂1−ξ̂0

e
(u2−p̂)2

2(2ξ̂1−ξ̂0) Erfc

(
− p̂−u2√

2(2ξ̂1−ξ̂0)

)
Rx̂(u1,u2)

(B.10)

Finally, the equation obtained deriving with respect to ϕ̂ is given by:

ϕ =

ˆ
duGx̂(u1,u2)

e
(u1−m̂)2

2(2̂q1−q̂0) Erfc

(
m̂−u1√

2(2q̂1−q̂0)

)
Rx̂(u1,u2)

. (B.11)

B.2. The annealed saddle-point equations for general γ

In this case, the set of equations x̂= F2[x] obtained differentiating A1(x, x̂,ϕ) with respect to
the order parameters x takes the simpler form:

p̂=− (κ−µm)
σ2 q1

ξ̂1 =
1

2σ2 q1

m̂=
µp
σ2q1

+
µm

σ2q1(1+ γ)
− µ(κ−µm)

σ2q1
+

γm(κ−µm) [µm− (κ−µm)]
σ2(1+ γ)q21

− (κ−µm)
σ2q1(1+ γ)

q̂1 =− ξ1
2σ2q21

+
2(κ−µm)[(γ+ 1)p+m]

2σ2(1+ γ)q21
− (κ−µm)2

2σ2q21
+ 2

γ

1+ γ

m2(κ−µm)2

2σ2q31
+

1
2q1

. (B.12)
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The derivative with respect to ϕ̂ reads

ϕ =
e−ϕ̂

2

√
π

q̂1
e
m̂2

4̂q1 Erfc

(
m̂

2
√
q̂1

)

×

(
1
2

√
π

ξ̂1
e

p̂2

4ξ̂1

[
1+Erf

(
p̂

2
√

ξ̂1

)]
+
e−ϕ̂

2

√
π

q̂1
e
m̂2

4̂q1 Erfc

(
m̂

2
√
q̂1

))−1

.

(B.13)

Exploiting these identities, the equations x= F1[x̂] can be written as two pairs of decoupled
equations, given by:

m=−ϕ
m̂
2q̂1

+
ϕ√
π q̂1

e−
m̂2

4̂q1

Erfc

(
m̂

2
√
q̂1

) ,

q1 =
ϕ

2q̂1
+

ϕm̂2

4 q̂21
− ϕm̂

2
√
πq̂

3
2
1

e−
m̂2

4̂q1

Erfc

(
m̂

2
√
q̂1

) ,

(B.14)

and by

p=−(1−ϕ)
p̂

2ξ̂1
− (1−ϕ)√

π ξ̂1

e
− p̂2

4ξ̂1[
1+Erf

(
p̂

2
√

ξ̂1

)]

ξ1 =
(1−ϕ)

2ξ̂1
+

(1−ϕ)p̂2

4 ξ̂21
+

(1−ϕ)p̂

2
√
πξ̂

3
2
1

e
− p̂2

4ξ̂1[
1+Erf

(
p̂

2
√

ξ̂1

)] .
(B.15)

Appendix C. Rescaled conjugate parameters and useful identities

The quenched saddle point equations x= F1[x̂] for generic γ presented in appendix B.1 are
conveniently expressed in terms of the following rescaled variables:

x1 =
m̂√

2q̂1 − q̂0
, x2 =

p̂√
2ξ̂1 − ξ̂0

, y=
√

2ξ̂1 − ξ̂0, r=

√
2q̂1 − q̂0
2ξ̂1 − ξ̂0

,

β1 =
q̂0
y2

, β2 =
ξ̂0
y2

, β3 =
ẑ
y2

,

(C.1)

see also (49). They are equivalent to:

my=
ˆ

du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

1
r

√
2
π − (x1 − u1)e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)



py=
ˆ

du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

−reϕ̂
√

2
π +(x2 − u2)e

(x2−u2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)

 ,
(C.2)
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and

q1y
2 =

ˆ
du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

×

 1
r2

−
√

2
π (x1 − u1)+ [1+(x1 − u1)

2]e
(x1−u1)

2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)



ξ1y
2 =

ˆ
du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

× eϕ̂r

√
2
π (x2 − u2)+ [1+(x2 − u2)

2]e
(u2−x2)

2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)

.

(C.3)

The last three equations give:

q0y
2 =

ˆ
du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

1
r

√
2
π − (x1 − u1)e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)


2

ξ0y
2 =

ˆ
du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

−reϕ̂
√

2
π +(x2 − u2)e

(x2−u2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)


2

(C.4)

and

zy2 =
ˆ

du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

1
r

√
2
π − (x1 − u1)e

(x1−u1)
2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)


×

−reϕ̂
√

2
π +(x2 − u2)e

(x2−u2)
2

2 Erfc
(
− x2−u2√

2

)
Rx̂(u1,u2)


. (C.5)

Finally:

ϕ =

ˆ
du1du2
2π

r e
− 1

2
(−u21β2r

2+2β3ru1u2−u22β1)
β1β2−β2

3√
β1β2 −β2

3

e
(u1−x1)

2

2 Erfc
(
x1−u1√

2

)
Rx̂(u1,u2)

. (C.6)

These convolutions are not independent, but can be related by integration by parts. Indeed,
using the above expression it is straightforward to show that the following identities hold for
all values of the conjugate parameters:

r2(q1y
2) =−rx1(my)+ϕ −β1

[
(q1y

2)− (q0y
2)
]
+β3(zy

2)

(ξ1y
2) =−x2(py)+ (1−ϕ)−β2

[
(ξ1y

2)− (ξ0y
2)
]
+β3(zy

2),
(C.7)
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where the brackets denote the integral representations for the corresponding parameters.
Summing the equations, one derives the identity:

r2(q1y
2)+ (ξ1y

2) = 1− rx1(my)− x2(py)−β1

[
(q1y

2)− (q0y
2)
]

−β2

[
(ξ1y

2)− (ξ0y
2)
]
+ 2β3(zy

2), (C.8)

while the difference gives:

r2(q1y
2)− (ξ1y

2) =−rx1(my)+ x2(py)+ 2ϕ− 1−β1

[
(q1y

2)− (q0y
2)
]

+β2

[
(ξ1y

2)− (ξ0y
2)
]
. (C.9)

In the case γ = 0, the identity (C.8) entails x2 = rx1, as we discuss in the main text.
In the annealed case, it is straightforward to check that the equations (B.14) and (B.15) are

equivalent to (70) and (71), once the parameters (68) are introduced. Moreover, by inspect-
ing (70) and (71) one sees that the following two relations hold:

r2(q1y
2) =−rx1(my)+ϕ

(ξ1y
2) =−x2(py)+ (1−ϕ),

(C.10)

which are equivalent to

r2(q1y
2)+ (ξ1y

2) =−rx1(my)−x2(py)+ 1

r2(q1y
2)− (ξ1y

2) =−rx1(my)+x2(py)+ 2ϕ− 1.
(C.11)

For γ = 0, the first identity entails again x2 = rx1.

Appendix D. The self-consistent equations in the uncorrelated γ=0 case

Setting γ = 0 in the equations given in appendix B.1 we obtain:

p̂=− (κ−µm)
σ2(q1 − q0)

ξ̂1 =
q1 − 2q0

2σ2(q1 − q0)2

ξ̂0 = ẑ=− q0
σ2(q1 − q0)2

m̂=
1

σ2(q1 − q0)
[µ(m+ p)− (κ−µm)(1+µ)]

q̂1 =
(κ−µm)(m+ p)
σ2(q1 − q0)2

− ξ1
2σ2(q1 − q0)2

− q0[ξ0 − ξ1 + 2z]
σ2(q1 − q0)3

− (κ−µm)2

2σ2(q1 − q0)2
− q0

2(q1 − q0)2
+

1
2(q1 − q0)

(D.1)

and finally

q̂0 =
2(κ−µm)(m+ p)

σ2(q1 − q0)2
− (κ−µm)2

σ2(q1 − q0)2
− q0

(q1 − q0)2
− ξ1

σ2(q1 − q0)2

+
(q1 + q0)(ξ1 − ξ0 − 2z)

σ2(q1 − q0)3

(D.2)
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from which it follows that

2q̂1 − q̂0 =
1

σ2(q1 − q0)

[
σ2 +

ξ0 − ξ1 + 2z
q1 − q0

]
= (2ξ̂1 − ξ̂0)

[
σ2 +

ξ0 − ξ1 + 2z
q1 − q0

]
2ξ̂1 − ξ̂0 =

1
σ2(q1 − q0)

.

(D.3)

In terms of the parameters (C.1), these equations read:

x2 =−κy+µym

rx1 = κy+(2+µ)x2 +µyp

1= σ2y2(q1 − q0)

r2 = σ2(ξ0 − ξ1 + 2z)y2 +σ2

β3 = β2

β2 = 1−σ2y2q1 =−σ2y2q0

β1 = r2β2 +
[
σ4q1 −σ2r2q1 −σ2ξ1

]
y2 +

µ+ 2
µ

σ2x22 −
2
µ
σ2x1x2r.

(D.4)

The factor ymultiplies the order parameter in such a way that the resulting expressions do not
depend on y, as one can see from equations (C.2)–(C.6). This implies that the variable y can be
fixed at the end of the calculation, via the identity κy=−x2 +µmy. The remaining equations
are those given in (50), with the expressions multiplying factors of y given by the integral
convolutions in the above section (with β3 = β2). The derivation of the annealed equation (69)
is completely analogous.

Appendix E. The cavity solution: a reminder

As we remarked in the main text, the one equilibrium phase of the Lotka–Volterra model
can be characterized via the so called cavity method [27]. In essence, the method consists in
introducing a new species in the interacting system, and in relating the properties of the system
with S+ 1 species to that with S species, under the hypothesis that a unique equilibrium exists.
The cavity analysis of the Lotka–Volterra equations has been performed in [28] (see also [29]
for a discussion of this method in the context of ecology), and analogous results have been
obtained in [34, 60] via a dynamical formalism. In particular, the cavity treatment allows to
derive the value of the three parameters characterizing the unique, stable equilibrium attracting
the dynamics: the diversity ϕ, and the first two moments m,q1 of the configuration vector; the
result is incorporated into a self-consistent equation for the variable (κ−µm)/[σ

√
q1], which

we recognise to coincide (up to a sign) with the parameter x2 in our annealed formalism, see
equations (a) and (c) in (68). We set here κ= 1, and follow the notation of [34]. The self-
consistent equation for x2 obtained within the cavity approximation reads:

σ2[w2(−x2)+ γw0(−x2)]
2 = w2(−x2), wn(x) =

ˆ x

−∞
ds
e−

s2

2

√
2π

(x− s)n. (E.1)

From the solution xcav2 to this equation, the second moment qcav1 and the diversity ϕcav are
obtained from:

qcav1 =
σ2[w2(−xcav

2 )+ γw0(−xcav
2 )]2{

µw1(−xcav
2 )+xcav

2 σ2[w2(−xcav
2 )+ γw0(−xcav

2 )]
}2

ϕcav = w0(−xcav
2 ).

(E.2)
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For γ = 0, the equation (E.1) becomes:

σ2

−e
−x2

2
2 x2√
2π

+
1+x2

2
2

Erfc

(
x2√
2

)= 1, (E.3)

which is exactly the equation (75) that one gets in the annealed scheme, for r= 1 (and thus
x1 = x2). For r= 1 and ϕ̂= 0, moreover, (74) is also satisfied. Finally, using that y= [σ

√
q1]

−1,
one sees that the equations (76) and (77) are equivalent to (E.2).

To summarize, when ϕ̂= 0 and r= 1 the annealed self-consistent equations reproduce the
solution obtained with the cavity method. Moreover, the quenched equation map into the
annealed equations at this ‘cavity matching point’, as we showed explicitly in section 4.3. The
cavity matching point describes different things depending on whether one is in the unique
equilibrium phase σ ⩽ σc, or in the multiple equilibria phase σ > σc. For σ ⩽ σc, the cavity
solution describes the properties of the unique equilibrium attracting the dynamics of the sys-
tem. At the corresponding value of diversity ϕcav, the complexityΣ(A)

σ (ϕ) reaches its maximum,
and it is equal to zero. For σ > σc, ϕcav only marks the diversity value below which the com-
plexity can be computed within the annealed approximation; in particular, ϕcav does not give
the diversity of the most numerous equilibria, for which Σ

(Q)
σ (ϕ) is maximal. At the critical

point σ = σc, all the equation match and the unique equilibrium has parameters (for κ= 1):

m=
1
µ
, q1 =

π

µ2 , p=− m
1+ γ

=− 1
(1+ γ)µ

, ξ1 =
q1

(1+ γ)2
=

π

(1+ γ)2µ2 . (E.4)

Appendix F. The replica calculation of the complexity: a reminder

F.1. The Monasson recipe for the complexity

The complexity curve Σ1RSB discussed in the main text is obtained within the so called
Monasson method [14]. This method requires the system to be conservative, and thus to be
associated to a potential landscape. In the Lotka–Volterra symmetric case the potential land-
scape reads:

L(N⃗) =−
S∑

i=1

(
κiNi−

N2
i

2

)
+

1
2

S∑
i,j=1

αijNiNj, (F.1)

and the method allows to obtain the complexity Σ1RSB(l) of the typical (i.e. most numerous)
local minima N⃗∗ of (F.1) such that l= limS→∞ S−1L(N⃗∗). The main idea of [14] is thatΣ1RSB(l)
can be obtained as a Legendre transform of the free-energy of m copies of the system evolving
in the same random landscape, weakly-coupled in such a way that they explore the same state
(basin of attraction of a local minimum of the free-energy). The object to compute is then the
modified free energy function:

βΦ(m,β) = lim
S→∞

lim
n→0

− 1
nS

log⟨Znm⟩= βmf1RSB(m,β), (F.2)

where Znm is the partition function of the m copies and f1RSB(m,β) is the free energy of one
single copy of the system computed within the 1RSB ansatz, with m being the variational
parameter in the 1RSB ansatz for the overlap matrix—the parameter measuring the size of the
inner blocks of the overlap matrix [1]. In the zero-temperature limit β →∞, the free energy
becomes a function of the scaled parameter m̃= βm, i.e. f1RSB(m,β)→ f̃1RSB(m̃). In terms of
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these quantities, the complexity curve Σ1RSB(l) is obtained parametrically though the coupled
system of equations:

l= ∂m̃

(
m̃ f̃1RSB(m̃)

)
, Σ= m̃2∂m̃ f̃1RSB(m̃), (F.3)

by tuning the parameter m̃ which parametrizes for the value l of the potential (F.1).

F.2. The structure of the replica calculation

Performing the 1RSB free-energy calculation [31], one gets:

f̃1RSB(m̃) = min
m,q0,q1,χ

F(m̃;m,q0,q1,χ) , (F.4)

where q0,q1,m are variational parameters having the same meaning as in the replicated Kac-
Rice calculation, while χ is a parameter related to the properties of the Hessian matrix (the
matrix of second derivatives of the potential (F.1)) at a local minimum. For κi = κ one finds:

F(m̃;m,q0,q1,χ) =
σ2

4

[
m̃(q21 − q20)+

2q1
σ2χ

]
− µm2

2

− 1
m̃

ˆ
dz√
2π
e−

z2

2 log

e
α∆2(z)
2(1−α) Erfc

(
−∆(z)√
2(1−α)

)
+
√
1−α Erfc

(
∆(z)√

2

)
2
√
1−α


(F.5)

with

∆(z) =
κ−µm√
σ2(q1 − q0)

+

√
q0

q1 − q0
z, α=

m̃σ2(q1 − q0)
1−χ−1 . (F.6)

The equation (F.3) give:

l=
σ2

2

[
m̃(q21 − q20)+

q1
σ2χ

]
− µm2

2
− σ2(q1 − q0)

2(1−α)(1−χ−1)

×
ˆ

dz√
2π
e−

z2

2


√

2
π

∆(z)√
1−α

+ e
∆2(z)

2(1−α)

(
1+ ∆2(z)

1−α

)
Erfc

(
−∆(z)√
2(1−α)

)
e

∆2(z)
2(1−α) Erfc

(
−∆(z)√
2(1−α)

)
+
√
1−αe

∆2(z)
2 Erfc

(
∆(z)√

2

)
 (F.7)

and

Σ1RSB

=
σ2

4
m̃(q21 − q20)+

ˆ
dz√
2π
e−

z2

2 log

e
α∆2(z)
2(1−α) Erfc

(
−∆(z)√
2(1−α)

)
+
√
1−α Erfc

(
∆(z)√

2

)
2
√
1−α



− σ2(q1 − q0)m̃
2(1−α)(1−χ−1)

ˆ
dz√
2π
e−

z2

2


√

2
π

∆(z)√
1−α

+ e
∆2(z)

2(1−α)

(
1+ ∆2(z)

1−α

)
Erfc

(
−∆(z)√
2(1−α)

)
e

∆2(z)
2(1−α) Erfc

(
−∆(z)√
2(1−α)

)
+
√
1−αe

∆2(z)
2 Erfc

(
∆(z)√

2

)
 ,

(F.8)

where the order parameters q1,q0,m and χ have to be determined taking the variation
of (F.5). The resulting saddle-point equations have a structure that is rather simple to interpret
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[31]. Indeed, the replica calculation is formulated in terms of an effective single-species
potential:

Leff(N, ξ,z) =−N2

2χ
+

(
−κN+

N2

2

)
+
(
µm− ξ σ

√
q1 − q0 − zσ

√
q0
)
N (F.9)

depending on two fields ξ,z introduced performing the Hubbard-Stratonovich transformations
to decouple the quartic terms in the overlaps arising after averaging over the random couplings
αij. The self-consistent equations for the order parameters m,q0,q1 can be expressed as a triple
average:

m=

ˆ
dz√
2π
e−

z2

2

ˆ
dνm̃(ξ;z) E0 [N]

q0 =
ˆ

dz√
2π
e−

z2

2

(ˆ
dνm̃(ξ;z) E0 [N]

)2

q1 =
ˆ

dz√
2π
e−

z2

2

ˆ
dνm̃(ξ;z) (E0 [N])

2

(F.10)

where the internal average reads

E0 [N] = lim
β→∞

´∞
0 dNe−βLeff(N,ξ,z)N´∞
0 dNe−βLeff(N,ξ,z)

= Nsp(ξ,z) =max

{
0,

ξ σ
√
q1 − q0 +κ−µm+σ

√
q0z

1−χ−1

}
(F.11)

as it follows from a saddle-point calculation, while the outer average is taken with respect to
the measure:

dνm̃(ξ;z) =
1
Z[z]

dξ√
2π
e−

ξ2

2 e−m̃ Leff(Nsp(ξ,z),ξ,z) (F.12)

with Z[z] a normalization. Similarly, one finds the following equation for χ:

χ2σ2
ˆ

dz√
2π
e−

z2

2

ˆ
dνm̃(ξ;z) E0 [θ(N)]−χ+ 1= 0, (F.13)

and thus by analogy with the above equation one can make the identification:

χ2σ2ϕ −χ+ 1= 0, (F.14)

where ϕ is the diversity of the counted local minima, which is not a free-parameter in the
replica calculation but it is fixed as a function of q1,q0,m,χ. The order parameters are therefore
obtained as double averages of the (moments of the) truncated Gaussian variable Nsp(z, ξ),

m=

ˆ
dz√
2π
e−

z2

2
1
Z[z]

ˆ
dξ√
2π
e−

ξ2

2 e−Leff(Nsp,ξ,z)Nsp

q0 =
ˆ

dz√
2π
e−

z2

2

(
1
Z[z]

ˆ
dξ√
2π
e−

ξ2

2 e−Leff(Nsp,ξ,z)Nsp

)2

q1 =
ˆ

dz√
2π
e−

z2

2
1
Z[z]

ˆ
dξ√
2π
e−

ξ2

2 e−Leff(Nsp,ξ,z)N2
sp,

(F.15)

which in turn is obtained as the global minimum of an effective single particle potential (F.9),
where the interactions between species are encoded self-consistently in the Gaussian fields ξ
and z. We remark that given the effective potential (F.9), one can introduce an effective force:

feff(N, ξ,z) =−∂Leff
∂N

=−(1−χ−1)

[
N−

ξ σ
√
q1 − q0 +κ−µm+σ

√
q0z

1−χ−1

]
. (F.16)
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One sees that when Nsp > 0, then feff(Nsp, ξ,z) = 0; similarly, when Nsp = 0 because ξ +∆(z)<
0, then feff(Nsp, ξ,z)< 0. Therefore, the uninvadability constraint is encoded naturally in the
structure of the replica calculation. Notice also that while (F.8) does not depend on µ, (F.7)
does.

Finally, we remark that using the equation (F.14), the quantity χ can be related to the
resolvent of the matrix (8) evaluated at the local minima that one is counting. Indeed, in the
symmetric case γ = 1 the resolvent of the matrix (8) evaluated in a local minimum of diversity
ϕ, defined as

GH(z) = lim
S→∞

1
Sϕ

Tr

{
1

z−H

}
, (F.17)

in the large-S limit equals to:

GH(z) = Gσ
√
ϕ(z+ 1), (F.18)

where Gσ
√
ϕ(z) = (z− sign(z)

√
z2 − 4σ2ϕ)/(2σ2ϕ) is the resolvent of a matrix with GOE stat-

istics, with variance σ2ϕ. Comparing with (F.14) we see that it holds

GH(0) =
1

2σ2ϕ

(
1−
√

1− 4σ2ϕ
)
= χ. (F.19)

F.3. The resulting complexity and the relation with the Kac–Rice quenched calculation

In figure F1(left) we show the complexity (F.8) as a function of the intensive value of the poten-
tial (F.7) for one value of diversity in the multiple equilibria phase. By varying the parameter
m̃, one obtains two branches in the curve Σ1RSB(l): the red branch is clearly unstable, as the
resulting complexity does not have the right convexity properties; the green branch is instead
stable. One sees that the complexity increases with the value of the potential l of the counted
local minima, as it usually happens in disordered landscapes; it vanishes at l=−0.1638, which
gives an estimate of the ‘ground state energy’ of the model within the 1RSB approximation.
Given the solution of the replica self-consistent equations, to each value of l one can associate
a unique value of diversity

ϕ =

ˆ
dz√
2π
e−

z2

2

ˆ
dνm̃(ξ;z) E0 [θ(N)] . (F.20)

In figure F1(right) we show the 1RSB complexity as a function on diversity. The comparison
with the annealed Kac–Rice complexity is given in figure 9(right) and discussed in the main
text.

One sees from the expressions in this appendix that there is an apparent similarity between
the self-consistent equations obtained within the replicated Kac–Rice formalism, and those
obtained within the replica framework. Therefore, it is natural to wonder in which limit the
replica solution can be recovered within the quenched Kac–Rice framework. First, we remark
that an analogous version of the Kac–Rice order parameters p, ξ0 and ξ1 can be obtained
as moments of the effective force (F.16), in analogy with (F.10) with N replaced by feff(N)
(similarly for z). Comparing the expressions in this appendix with those in equation (C.1)
and in the following ones, we see that the integral expressions for the order parameters
coincide formally provided that the following conditions hold in the Kac–Rice framework:
x2/x1= reϕ̂ = rβ2/β1 = (1−α)−1/2 with α defined in (F.6), and β1β2 −β2

3 = 0, which is the
singular limit of the Gaussian measure in equation (C.1) and in the following ones. However,
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Figure F1. 1RSB complexity for σ = 1= γ and µ= 5 as a function of the intensive
value of the potential l and of the diversity ϕ, respectively.

we find that the replica solutions for the order parameters do not solve all of the quenched Kac–
Rice self-consistent equations under the assumptions above at the value of diversity determ-
ined by the replica solution. This is compatible with the fact that imposing a fixed value of
potential l of the counting minima or imposing a fixed diversity ϕ is not equivalent: the typical
local minima at a given level-set of the potential have a certain diversity, but they are not the
typical (most numerous) minima at that diversity (which are those picked up by the Kac–Rice
calculation).
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