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In this paper we analyze the predictions of the forward approximation in some models which exhibit an
Anderson (single-body) or many-body localized phase. This approximation, which consists of summing over
the amplitudes of only the shortest paths in the locator expansion, is known to overestimate the critical value
of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the
approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined
by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean-field
theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer
matrix techniques, and the results are compared with the most precise exact diagonalization results available.
For the Anderson problem, we find a critical value of the disorder which is 0.9% off the most precise available
numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model
with random fields the critical disorder hc = 4.0 ± 0.3 is strikingly close to the most recent results obtained by
exact diagonalization. In both cases we obtain a critical exponent ν = 1. In the Anderson case, the latter does
not show dependence on the dimensionality, as it is common within mean-field approximations. We discuss
the relevance of the correlations between the shortest paths for both the single- and many-body problems, and
comment on the connections of our results with the problem of directed polymers in random medium.
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I. INTRODUCTION

The propagation of waves and quantum particles in a
disordered medium is a fascinating and challenging problem in
statistical mechanics, with plenty of relevance for experiments
[1–3]. Among the phenomena that occur in such a setting,
Anderson localization is probably the most striking [1,4].
“Anderson’s theorem” in Ref. [4] states that for sufficiently
strong disorder, diffusive transport is completely suppressed in
single-particle problems on a lattice. The study of the transition
that separates the two phases (localized and delocalized) has
resisted an exact solution for about 60 years, and numerical
methods are still at the core of the advances in this topic [5].

Recently, interest in Anderson localization has surged due
to the work by Basko, Aleiner, and Altshuler [6], henceforth
denoted by BAA. There, the phenomenon of many-body
localization (MBL), i.e., the stability of the Anderson insulator
to the addition of interactions, is investigated. BAA’s work has
been extended and re-interpreted in several other works [7–17],
and MBL appears now to be the most robust mechanism
to break the ergodicity that is typical of generic interacting
systems.

The core of BAA’s analysis relies on perturbatively ac-
counting for the interactions, at finite temperature and particle
density. Technically, they consider the perturbation theory for
the imaginary part of the propagator of an excitation on top
of an eigenstate by means of the Keldysh formalism. For
sufficiently weak interactions, the perturbative series is shown
to converge with probability equal to 1. In the spirit of Ref. [4]

this implies the localization of the excitations themselves, and
the absence of transport.

As an alternative route, the MBL problem can be interpreted
as a single-particle tight-binding problem in the space of
many-body configurations [18], with the interactions playing
the role of an effective hopping. However, several issues
arise in this formulation. First, the on-site energies in the
resulting effective lattice are not independent variables drawn
from the same distribution, but they are strongly correlated.
Second, the connectivity of a configuration in the many-body
problem scales with (a power of) the system size: it diverges
in the thermodynamic limit, and thus it is impossible to
define a limiting graph. As a consequence, one needs to
define an effective connectivity which stays of O(1) in the
thermodynamic limit (a similar phenomenon is observed in
Ref. [19]). Finally, the number of paths of a given length
connecting two many-body configurations grows factorially
with the distance between them, the distance being defined
as the minimum number of actions of the interaction operator
needed to connect the initial to the final configuration. Since
the distance between two configurations can be of the order
of the system size, the number of paths can grow factorially
in the system size. When the mapping to a single-particle
problem is applied to a system of N interacting spins, it
results in a correlated-disorder problem on a (section of) an
N -dimensional hypercube.

Despite these complications, in some recent works
[14,16,19] this approach has been used successfully to
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estimate, among other things, the boundaries of the MBL
region. The analytical calculations in Refs. [14,19] were shown
to be in very good agreement with the numerical results in the
same papers, obtained with exact diagonalization. The analytic
results are derived revisiting an approximation already used in
Refs. [4,18,20,21], which consists in calculating the Green’s
functions by retaining only the lowest order in the hopping.
Recently, this approximation has been used in Ref. [22] to
derive the power-law tail of the distribution of the wave
function amplitudes on a Bethe lattice in the localized phase.

In this paper we discuss in detail this approximation, dubbed
“forward approximation” (FA), by illustrating its virtues and
limitations and its connections to other, seemingly unrelated
problems of statistical physics. The paper is organized as fol-
lows: In Sec. II we derive the expression for the wave function
amplitudes in forward approximation, and discuss a criterion
for localization given in terms of the probability of resonances.
In Sec. III, after recalling some known results on the Anderson
model on the Bethe lattice, we focus on d-dimensional systems
(with d = 3–6). We compare the analytic results we get
for the critical disorder within the FA with the numerics,
showing how the approximation gives better results as the
dimensionality d is increased. We then discuss the application
of the aforementioned technique to a many-body problem
of interacting spins in a disordered environment. In Sec. IV
we discuss the relevance of the correlations and interference
between different paths connecting two configurations, both
for the single-particle and for the many-body problem. In the
Conclusion we comment on the various possible directions in
which this work can be extended, focusing in particular on the
application of the forward approximation to the study of the
MBL phase and of the many-body localization-delocalization
transition.

II. DERIVATION

A. The forward approximation for the eigenfunctions

To begin with, we derive the expression for the wave
function amplitudes in FA for a single-particle hopping on a
finite lattice with on-site disorder. We consider the Hamiltonian

H =
N∑

i=1

εic
†
i ci + t

∑
〈i,j〉

(c†i cj + H.c.). (1)

In the Anderson model, the εi are independent random
variables uniformly distributed in [−W/2,W/2], one for each
of the N sites in the lattice. The edges 〈i,j 〉 define the
lattice geometry. The lattice constant is set to 1, and we
denote with L the length scale characterizing the size of
the lattice (for a cubic lattice in dimension d the diameter
is L = N1/d , and for a Bethe lattice or regular random graph it
is L = ln[(N − 1)(K − 1)/(K + 1) + 1]/ ln K ≈ ln N/ ln K ,
where K + 1 is the connectivity of the lattice). The distance
d(a,b) between two arbitrary sites a,b of the lattice is the
number of edges in a shortest path connecting them. We refer
to it as the lattice distance in the following.

We consider the matrix elements of the resolvent between
two states associated to the sites a,b in the lattice:

G(b,a,E) = 〈b| 1

E − H
|a〉, (2)

at energy E. They have the following expansion in series of t :

G(b,a,E) = 1

E − εa

∑
p∈paths(a,b)

∏
i∈p

t

E − εi

, (3)

where the sum runs over all the paths p in the lattice connecting
the sites a and b, and i labels the sites visited by the path p

(site a excluded). Given two sites a,b at lattice distance n, the
lowest orders in the expansion are

G(b,a,E) = 1

E − εa

t

E − ε1

t

E − ε2
· · · t

E − εn−1

t

E − εb

+ other paths of length n + · · · , (4)

where the sites (a,1,2, . . . ,n − 1,b) belong to one of the
shortest paths connecting a and b.

On the other hand, from the spectral decomposition it
follows

G(b,a,E) =
∑

α

ψα(b)ψ∗
α (a)

E − Eα

, (5)

and thus the residue at E = Eα gives

lim
E→Eα

(E − Eα)G(b,a,E) = ψα(b)ψ∗
α (a), (6)

assuming no degeneracy of the eigenvalues.
The path representation (3) does not have a pole at Eα , to

no order in t . To get the exact poles it is necessary to resum
the closed paths in the series expansion. Once this is done,
the full series is recast into a sum over the nonrepeating paths
paths∗(a,b) connecting the sites a and b:

G(b,a,E) = 1

E − εa − �a(E)

×
∑

p∈paths∗(a,b)

∏
i∈p

t

E − εi − �
(p)
i (E)

. (7)

Here �a(E) is the local self-energy at the site a, defined
through the identity

G(a,a,E) ≡ 1

E − εa − �a(E)
. (8)

It is equal to the sum of the amplitudes of all the closed paths
in which site a appears only as starting and ending point; to
lowest order in t

�a(E) =
∑
j∈∂a

t2

E − εj

+ O(t3), (9)

where ∂a is the set of nearest-neighboring sites of a. The
path-dependent term �

(p)
i (E) is a modified self-energy, which

resums the loops around site i, never crossing site i again,
or any of the sites (a,1, . . . ,i − 1) already visited by the
nonrepeating path p.

The expansion (7) in nonrepeating paths has several
advantages. First, while paths(a,b) is an infinite set, even for a
finite lattice, paths∗(a,b) is finite for a finite lattice. Moreover,
(7) is free of the divergences affecting (3) that are due to local
resonances, i.e., to sites i,j at bounded distance satisfying
|εi − εj | ∼ �, with � small (we clarify the exact meaning of
small in Sec. II B). Local resonances necessarily occur also
in the localized phase, and produce arbitrarily large factors
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in Eq. (3), corresponding to the paths repeatedly hitting the
resonant sites an arbitrary number of times. These repetitions
of large factors lead to the divergence of the naive perturbation
series in t , but are resummed into self-energy corrections in
Eq. (7). The “renormalized” expansion in nonrepeating paths is
found to converge in the localized phase [4], when resonances
do not proliferate at asymptotically large distances in space,
and the hopping hybridizes only the degrees of freedom in
a finite, albeit possibly big, region of space. An analogous
resummation procedure is discussed in Ref. [16], where
the perturbation theory for quasilocal conserved operators is
shown to converge in the MBL phase.

The expression for the eigenfunction is obtained from the
resolvent as follows: the eigenenergy Eα satisfies Eα = εa +
�a(Eα); thus the first factor of (7) has a pole at Eα with residue
|ψα(a)|2, as follows from (8) and (6). Then,

lim
E→Eα

(E − Eα)G(b,a,E)

= |ψα(a)|2 lim
E→Eα

∑
p∈paths∗(a,b)

∏
i∈p

t

E − εi − �
(p)
i (E)

, (10)

which gives

ψα(b) = ψα(a)
∑

p∈paths∗(a,b)

∏
i∈p

t

Eα − εi − �
(p)
i (Eα)

, (11)

with ψα(a) obtained from �a(Eα) using (6) [23].
From (11) we can read the expression of the wave function

amplitudes to lowest order in t . Assume that α labels an
eigenstate localized at site a for t → 0. Since �α = O(t2), we
have to lowest order Eα → εa , ψα(a) → 1, �i → 0, giving

ψα(b) =
∑

p∈spaths(a,b)

∏
i∈p

t

εa − εi

, (12)

where the set spaths(a,b) ⊂ paths∗(a,b) contains the shortest
paths from a to b. Note that this derivation does not rely on
the particular structure of the lattice or on the independence
of the on-site energies, and thus it can be straightforwardly
generalized to hopping problems on graphs with different
geometry or more general distribution of the random energies,
such as the ones in Sec. III C.

The effect of the modified self-energy corrections �
(p)
i (εa)

is to weaken the role of resonances. Indeed, let us assume
that in the path p there is a site i which is resonant with a,
|εa − εi | ∼ �. In this case the forward approximation (12)
will contain the very large term t/�. However, the correction
�

(p)
i−1(εa) in the previous site also contains such large term,

leading to a compensation. As we shall see in the following,
neglecting this effect leads to an overestimate of the minimum
disorder strength needed to localize the system. On the other
hand, the loops contributing to the self-energy corrections
become less relevant when the dimensionality (or connectivity)
of the lattice is increased. Thus, the FA is expected to give
faithful results in higher dimension (see Sec. III B).

B. Probability of resonances and criterion for localization

For a single-particle problem on a finite-dimensional lattice,
we define an eigenstate ψα of a system of size L localized
if (with probability 1 over the disorder realizations) the

probability of finding a particle at a distance O(L) from the
localization center of the state tends to zero in the limit of large
L. More precisely, let a denote the localization center of ψα ,
and

ψr ≡ max
b: d(b,a)=r

|ψα(b)|. (13)

We define the state ψα localized if there exists a finite ξ > 0
such that

P

(
ln|ψr |2

2r
� − 1

2ξ

)
→ 1 for r → ∞. (14)

Namely, we require that the random numbers |ψα(b)|2 can
be enclosed in an exponential envelope for all b sufficiently
far from the localization center of the state. By means of the
Kubo formula, it is possible to show that this condition on
the eigenstates implies the vanishing of the dc conductivity.
We identify the localization length of ψα with the minimum
value of ξ for which Eq. (14) is true. It does, in general, depend
on the state; however, it is supposed to depend smoothly
on the energy Eα in the thermodynamic limit. A mobility
edge exists whenever there is band of energies for which
such minimum is not finite. In particular, at fixed energy
and at the corresponding critical value of disorder W = Wc,
the localization length diverges and the asymptotic bound in
Eq. (14) ceases to hold for any finite ξ . This entails that for
any arbitrarily small, positive ε = ξ−1 and at arbitrarily large
distances r from the localization center, there exist sites b such
that the ratio ln|ψα(b)|2/2r exceeds the constant −ε with some
finite probability. We expect the delocalized phase W < Wc to
be characterized by the stronger condition:

P

(
ln|ψr |2

2r
� −ε

)
→ 1 for r → ∞, (15)

holding for any arbitrarily small, strictly positive value of ε.
From Eqs. (14) and (15) it follows that the localization-

delocalization transition can be detected analyzing the statis-
tics of the wave function amplitudes as a function of distance.
In the following, we compute the wave function amplitudes
in FA and determine numerically the probability in Eq. (15),
choosing ε of the order of the numerical precision. We refer
to the resulting probability as the “probability of resonances.”
The terminology is motivated by the fact that within the FA, an
amplitude of O(1) at a site b at distance r from the localization
center a corresponds to a resonance between the two sites.
Indeed, the corresponding two-site problem can be considered
as a two-level system with reduced Hamiltonian

h =
(

0 hr

hr �

)
, (16)

where � = εa − εb, and

hr = t
∑

p∈paths∗(a,b)

∏
i∈p

t

εa − εi − �
(p)
i (εa)

, (17)

where the products are taken over all sites in the path, excluding
a,b. The sites are resonant when the energy difference εa − εb

is small, and precisely |�| < hr . Considering hr to lowest
order in t , one finds that this is equivalent to |ψ(b)| > 1, with
ψ(b) computed in the lowest order FA. Thus, with (14) and
(15) one is probing the statistics of resonances within the FA,
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and requiring that the probability to find at least a resonant
site at any sufficiently large distance r from the localization
center decays to zero in the localized phase. This criterion
involving resonances allows us to obtain an estimate for the
critical disorder within the FA also on the Bethe lattice, where
the exact eigenstates satisfy Eq. (14) even in the delocalized
phase, due to normalization.

III. RESULTS

A. Warming up: The Bethe lattice

The simplest setting for the application of the forward
approximation is a Bethe lattice: in this case, given two sites
a, b there is only one nonrepeating path connecting them,
along which all the energies are i.i.d. This makes the problem
amenable to analytic calculations [18,20,24]. We briefly recall
some results in the following.

Let a be the root of the tree, and K the branching number
(the connectivity is K + 1). Within the FA we get that the wave
function at one particular point at distance L from the root is
given by

ψL =
L∏

i=1

t

εa − εi

. (18)

This random variable has a power-law tail distribution for
any distribution of εi having a support S such that εa ∈ S,
as one can see from the divergence of the first moment
of the absolute value of ψL. It is convenient to consider
the distribution of the logarithm of ψL, whose moments
are all finite. Let us remind the reader that we choose
εi ∈ [−W/2,W/2], and in this calculation for simplicity we
set εa = 0. Defining

xL = ln|ψL|2 = −2
∑

i

ln(|εi |/t) (19)

we find that

〈xL〉 = 2L ln(2et/W ). (20)

The ratio 〈xL〉/L is the typical decay of wave function
amplitudes from the origin of localization

ξ−1
typ = 2 ln(2et/W ). (21)

However, this is not the localization length ξ as defined in
Eq. (14). The latter is indeed a uniform bound over the full
set of ∼KL points at distance L from the localization center:
it is determined by the decay rate of the maximal amplitude
over sites in each shell at distance L. This is a point-to-set
correlation function decay, which is familiar in the study of
disordered systems on the Bethe lattice (on a regular lattice
the point-to-set is substituted by the point-to-point, but with
exponentially many shortest paths leading to the final point).

The typical value of the maximal amplitude x∗
L among KL

samplings is the largest solution of

x∗
L : KLP (x∗

L) � 1. (22)

Here P (x) is the distribution of xL, and the KL paths are
treated as independent. For large L, what matters is the tail of

the distribution P (x). If we rescale

z = xL

2L
+ ln(W/2t), (23)

we get, for large z,

P (z) � exp[−L(z − 1 − ln z)]. (24)

The probability distribution of z can be found inverting its
Laplace transform, which is computable since z is a sum of
i.i.d. variables. The maximum z∗ over KL samplings of z is
the solution of

0 = −z∗ + 1 + ln z∗ + ln K = ln(z∗eKe−z∗
), (25)

and x∗
L � −2L ln(W/2t) + 2Lz∗. Localization occurs as long

as x∗
L/L < 0, so the critical condition can be written as

ln(Kez∗e−z∗
) = 0, (26)

z∗ − ln(Wc/2t) = 0. (27)

By eliminating z∗ we recover the familiar [20] equation:

Wc = 2teK ln(Wc/2t). (28)

Moreover, z∗ is given in terms of Wc as

z∗ = ln(Wc/2t), (29)

so we can write the localization length as

ξ−1 = −x∗
L/L = 2 ln(W/Wc). (30)

This gives a mean-field exponent for the divergence of the
localization length at the transition:

ξ � 2Wc

|W − Wc| . (31)

Note that ξtyp < ξ irrespective of the value of the disorder.
The belief expressed in Ref. [22] is that this behavior persists
even within the delocalized regime, in the form of very
irregular (multifractal) eigenstates. Note additionally that the
difference between ξtyp and ξ is due to the exponential
sampling of the probability distribution, and it extends both
to the finite-dimensional cube and to the many-body case.

B. d-dimensional cube

Consider now the case of a d-dimensional lattice of side
L, and let a be the site at one corner of the cube, which we
treat as the origin. Given any other site b, the orientation of
the nonrepeating, shortest paths from a to b induces a natural
orientation of the edges of the cube, which is thus directed;
see Fig. 1. Let r be the lattice distance of the sites with respect
to the origin a: for a cube of side L, the maximum r is rmax =
(L − 1)d, corresponding to the site at the opposite corner of
the cube with respect to a.

In an infinite cube the number of points at distance r from
the origin is (r + d − 1)!/[(d − 1)!r!], and thus it grows at
most polynomially in r , slower than ∼rd . Naively, one would
be led to think that the transition is given by the divergence
of ξtyp; see Eq. (21). However, the number of minimum length
paths leading from the origin to an arbitrary site at lattice
distance r scales exponentially with r , as ∼dr . Therefore,
unlike in the Bethe lattice case, in finite dimension the wave
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FIG. 1. Anderson model on a cube of side L = 3. The red, dashed
edges form one of the nonrepeating paths connecting the sites a and b,
of length r = (L − 1)d = 6. The other elements in the set paths∗(a,b)
are obtained following the arrows.

function amplitude at a given site b is a sum over exponentially
many correlated terms

ψα(b) =
∑

p∈spaths(a,b)

r∏
i=1

t

εa − εi

=
(

t

W

)r

ψ ′
α(b), (32)

where

ψ ′
α(b) =

∑
p∈spaths(a,b)

r∏
i=1

1

ε′
a − ε′

i

(33)

and the random variables ε′
i are uniformly distributed in

[−1/2,1/2]. In the following, we consider the probability
distribution of the random variable

Zr ≡ ln|ψ ′
r |2

2r
, (34)

for different values of r . Here ψ ′
r denotes the maximum among

all the rescaled amplitudes (33) at sites that are at lattice
distance r with respect to the origin a. The probability of
resonances for arbitrary values of t and W , see Eq. (15), is
easily recovered from the cumulative distribution function of
Zr as

P

(
ln|ψr |2

2r
� −ε

)
= P

(
Zr � ln

(
W

t

)
− ε

)
, (35)

with ε arbitrarily close to zero. According to Eqs. (14) and (15),
the density of Zr becomes asymptotically peaked at ln(Wc/t)
for r → ∞, with width going to zero with r . Thus, the critical
value of disorder can be estimated inspecting the scaling with
r of the probability density of Zr .

The distribution of Zr is hard to determine analytically,
due to the correlation between the different shortest paths. To
account for such correlations, we compute the amplitude (33)
numerically by means of a transfer matrix technique, and use
the resulting values to determine the probability (35) with ε

smaller than the numerical precision. The convenience of the
transfer matrix method relies on the fact that it takes only
polynomial time in r , as was realized by Medina and Kardar

[21] in their treatment of the Nguyen, Spivak, and Shklovskii
[25] (NSS) model [26].

The numerical computation is as follows. We fix t = 1 and
introduce the matrix T defined as

T = WAf , (36)

where Af is the forward adjacency matrix of the lattice (that is,
the adjacency matrix associated to the directed cube of Fig. 1),
and W is a diagonal matrix with components

W = diag

(
1

ε′
a − ε′

k

)
k=1,...,Ld

. (37)

We initialize the system in the state |ψ (0)〉 = |a〉 completely
localized in the origin a, and iteratively apply the transfer
matrix T . A single iteration gives

|ψ (1)〉 ≡ T |ψ (0)〉 = 1

ε′
a − ε′

l1

|l1〉 + 1

ε′
a − ε′

l2

|l2〉 + · · · , (38)

where l1, . . . ,ld are the forward neighbors of site a. The
value of ψα(b) equals ψα(b) = 〈b|ψ (r)〉, where |b〉 is the state
completely localized in the site b and r is the lattice distance
between a and b.

We fix ε′
a = 0 and compute the rescaled amplitude (33)

for all the points b on a shell at the same lattice distance
r = rmax − c from the origin of a hypercube of side L. Here
c ∼ O(1) is fixed so as to have about 20 points per each
size of the hypercube. We determine the maximal ψ ′

r among
the wave function amplitudes on those sites. We repeat the
procedure for hypercubes of different sizes, with O(105)
disorder realizations for most system sizes, decreasing to
O(103) realizations only for the biggest system sizes that we
consider (e.g., in d = 3 we take system sizes r = 10 through
292, with 1.5×105 disorder realizations up to r = 202 and
2.5×103 realizations up to r = 292).

As we discuss in Sec. IV, the main contribution to the
transfer matrix result comes from only one of the expo-
nentially many paths in Eq. (33), and the results obtained
with the transfer matrix technique are faithfully reproduced
by analyzing the statistics of the dominant path alone. The
latter can be determined (see Sec. IV) with an algorithm that
is computationally more efficient than the transfer matrix,
allowing us to access much bigger system sizes. The results
presented in this section for d = 6,7, as well as for the higher
values of r in d = 3–5, are obtained with this procedure.

1. Fluctuations of the wave function amplitudes

In Fig. 2 we plot the probability density of the variable Zr

defined in Eq. (34), for different values of r in d = 3. The plot
shows a drift of the position of the peaks with increasing r ,
together with the shrinking of the width of the distribution,
in agreement with the conditions (14) and (15). Plots of the
r dependence of the variance σ 2

Zr
of (34) are given in Fig. 3,

in log-log scale for d = 3–6. The linear behavior indicates
that the fluctuations of Zr decay to zero as a power law
in r , with a coefficient that depends on the dimensionality.
The higher cumulants of the distribution exhibit a similar
linear behavior in log-log scale. Moreover, the numerical
computation indicates that for fixed d the probability densities
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FIG. 2. Probability density of the variable Zr defined in Eq. (34),
for different r and d = 3. For r → ∞, the curves become peaked
around the critical value ln(Wc/t). Inset: Cumulative distribution
function. Each curve is obtained with 1.5×105 disorder realizations.
Very similar results are obtained for higher dimensionality.

of the variable

Z̃r = Zr − 〈Zr〉
σZr

(39)

collapse to a limiting curve for increasing r; see Fig. 4. As
shown in the same plot, for fixed r and varying dimensionality,
the distribution of Z̃r does not change significantly, except for
a weak d dependence of the tails.

FIG. 3. Variance σ 2
Zr

of the variable Zr defined in Eq. (34). The
plot is in log-log scale. The points corresponding to larger r are
fitted linearly, according to the scaling form Eq. (40), and the values
of the exponents ωFA(d) reported in Table I are extracted from the
coefficient of the linear term in the fit. The number of realizations is
1.5×105 for r smaller than 202, 53, 52, 40 for d = 3, 4, 5, and 6,
respectively, and 2×103 for larger values of r . Inset: Mean value of
the variable rZr defined in Eq. (34), for d = 3. The fit is linear with
a correction ∝rωFA(3), in agreement with the scaling form in Eq. (40),
with the value of ωFA(3) given in Table I. The results of the fit are,
with reference to Eq. (42), c1 = −18.2 ± 0.3, Wc = 27.03 ± 0.02,
c2 = 29.6 ± 0.8. The same behavior holds for higher dimensionality
and results in the estimates of the critical disorder values in Table II.

FIG. 4. Probability density P (Z̃) of the variable Z̃r defined in
Eq. (39). Each curve is obtained with 1.5×105 realizations. Top:
Density of Z̃r for different values r and d = 3. The curves seem to
converge to a unique limiting distribution with increasing r . Bottom:
Density of Z̃r for fixed r = 52 and different dimensionalities.

These numerical observations are compatible with the
following large r scaling form for Zr :

rZr ∼
r→∞ r ln

(
Wc

t

)
+ rω(d)u, (40)

where u is a random variable of O(1) with a distribution which
depends weakly on the dimensionality.

According to (40), for large r the fluctuations σ 2
Zr

decay to
zero with the power r2[ω(d)−1]. From the linear fit of ln (σ 2

Zr
)

we extract the numerical estimate of the exponent in Eq. (40),
which we denote with ωFA(d). The results are reported in
Table I.

In order to characterize the limiting distribution in Fig. 4, we
compute the skewness Sk = κ3/κ

3/2
2 and the kurtosis Kur =

κ4/κ
2
2 of the density of Z̃r (here κi denotes the ith cumulant

of the distribution). From (40) it follows that these parameters
approach the ones corresponding to the variable u in the limit
of large r . We restrict to d = 3, for which we have the largest
statistics available. Plots of the r dependence of Sk and Kur
are given in Fig. 5. The asymptotic values are estimated to be
Sk = 0.34 ± 0.02 and Kur = 3.24 ± 0.04; see the caption of
Fig. 5 for details.
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TABLE I. Values of the exponent ωFA(d) governing the decay of
the fluctuations of Zr with r; see Eq. (40). A comparison is made with
the values of the droplet exponents ωDP (D) obtained numerically for
the directed polymer in dimension 1 + (d − 1). The numerical values
are taken from Appendix A in Ref. [27].

d = D + 1 ωFA(d) ωDP (D)

3 0.278 ± 0.005 0.244
4 0.23 ± 0.01 0.186
5 0.191 ± 0.007 0.153
6 0.168 ± 0.006 0.130

2. Estimate of the critical disorder

To determine the critical value of disorder for t = 1, we
extrapolate the asymptotic limit of the typical value of Zr .
Since the distribution is not fat tailed, we can equivalently
consider the averages of Zr and set

〈Z∞〉 ≡ lim
r→∞〈Zr〉 = ln(Wc). (41)

The inset in Fig. 3 shows the scaling with r of r〈Zr〉. The
average grows linearly in r , in agreement with Eq. (40). We fit
the data with the form

〈rZr〉 = c1 + ln(Wc) r + c2 rω(d), (42)

with the numerical values ω(d) = ωFA(d) reported in Table I.
The resulting estimates of the critical disorder, which we

denote with WFA
c , are displayed in Table II. For the smallest

dimensions, a comparison is made with the critical values
W num

c determined in Refs. [28,29] by means of a combination
of exact diagonalization and transfer matrix techniques.

The data in Table II clearly show that the FA gives an upper
bound to the critical disorder, since the modification of the
energy denominators provided by the (modified) self-energy
corrections are neglected, and the effects of resonances are
thus enhanced. However, increasing the dimensionality, the

FIG. 5. Skewness Sk of the distribution of the variable Z̃r defined
in Eq. (39), for d = 3. The red dashed line is a fit of the form α + βrγ ,
with α,β,γ free parameters. The coefficient α is the estimate of the
asymptotic value of the skewness, and it equals Sk = 0.34 ± 0.02.
Inset: Kurtosis Kur of the distribution of Z̃r for d = 3, as a function
of r . The fitting procedure is analogous to the one for the skewness,
and results in Kur = 3.24 ± 0.04.

TABLE II. Comparison between the critical value for localization
in the Anderson model in d dimensions predicted by the forward ap-
proximation (WFA

c ) and the numerical results (W num
c ) of Ref. [28]. The

relative error decreases faster than d−6, presumably exponentially.
For d = 6 the transition value WFA

c = 77.0 ± 0.3 can be compared
with the result of Ref. [30], Wd=6

c = 74.5 ± 0.7. This number is
however an underestimation of the transition due to the choice of
boundary conditions. For 7 dimensions there is no available numerics
to compare with.

d WFA
c W num

c Error

3 27.03 ± 0.03 16.536 ± 0.007 39%
4 41.4 ± 0.1 34.62 ± 0.03 16%
5 57.8 ± 0.2 57.30 ± 0.05 0.9%
6 77.0 ± 0.3
7 93.8 ± 0.3

discrepancy between the numerical estimates of Wc decreases;
the enhanced precision of the FA result is due to the fact that
the loops giving rise to the self-energy corrections become
less relevant in higher dimensional lattices, and thus the FA
becomes asymptotically exact in this limit.

3. Divergent length scales and critical exponents

For fixed values of W and for finite r , the probability of
resonances (35) is determined by the tails of the distribution
of Zr .

For increasing r , the asymptotic limit is approached in a
different way at the two sides of the transition: for W > Wc,
the probability of resonances goes to zero exponentially with
r . Below the transition, the probability converges to 1 much
faster, with corrections that are only double exponential in
r . We justify analytically this behavior in the Appendix by
computing an approximate expression for the density of the
variable Zr . The approximation consists in considering the
different paths contributing to it as independent variables.

Examples of the fits of the probability of resonances are
shown in Fig. 6. To extract a W -dependent length scale l(W ),
we perform an exponential fit of the form

P

(
ln|ψr |2

2r
> 0

)
= a1(W )exp

[
− r

l(W )

]
(43)

for W > Wc. For W < Wc we determine l(W ) by means of
the linear fit

ln

∣∣∣∣ln
[

1 − P

(
ln|ψr |2

2r
> 0

)]∣∣∣∣ = a2(W ) − r

l(W )
. (44)

The length scale l(W ) is plotted in Fig. 7 for d = 3.
We expect it to diverge in the same way as the localization
length/correlation length does in the localized/delocalized
phase, respectively. We find that l(W ) diverges as a power law
at a critical disorder compatible with the values of WFA

c listed
in Table II. A fit of the form ln[l(W )] = ln c − ν ln|W − WFA

c |
results in an exponent that is compatible with ν ≈ 1 for all
dimensions, consistently with the Bethe lattice picture and
with the results in the Appendix. However, some deviations
can be observed: a more careful analysis of the numerical data
will be presented in a future publication.
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FIG. 6. Probability of resonances P (Zr > ln(W/t)) for the vari-
able Zr defined in Eq. (39) and d = 3. Asymptotically in r , the
probability reaches 0 exponentially fast in the localized phase, and
it reaches 1 double-exponentially fast in the delocalized phase, in
agreement with the analytic computations in the Appendix. In the
plot, the squares are the results of the transfer matrix calculation, the
points of the dominating path (see Sec. IV), while the continuous lines
are the exponential or double-exponential fits. Very similar results are
obtained for higher dimensionality.

4. Connections with the problem of directed polymers
in random medium

In the single-particle case, the energy denominators as-
sociated with different sites along the paths are independent
variables. Thus, the expression for the wave function amplitude
in FA, Eq. (12), resembles the expression for the partition func-
tion of a directed polymer (DP) in a random potential [31–33],
with the thermal weights for the polymer configurations
given by the amplitudes of the different paths. This analogy
is not straightforward, due to the occurrence of negative

FIG. 7. Power-law divergence of the length scale l(W ) defined in
Eqs. (43) and (44). The values of l(W ) for fixed W are determined
from fits such as the ones in Fig. 6. The power-law fit produces a
critical exponent ν � 1 and a critical value Wc compatible with the
ones listed in Table II. The results shown here are for d = 3; very
similar results are obtained for higher dimensionality. Notice how in
the delocalized phase the distance to observe a resonance is typically
larger (for the same |W − Wc|) than the localization length in the
localized phase.

contributions in Eq. (12). Nevertheless, it has been fruitfully
exploited both for the single-particle problem [34–37] and for
problems of interacting spins on the Bethe lattice [38–41].

Motivated by this analogy,the authors of Ref. [35] have
proposed a scaling form analogous to (40) for the logarithm
ln g of the conductance of an Anderson model. There, the
conductance in d = 2 is obtained from the Green’s functions,
which are computed numerically within a modified FA, the
modification consisting of taking energy denominators that
are not arbitrarily small but are bounded from below [42]. It
is shown that the fluctuations of ln g scale with an exponent
ω(d = 2) = 1/3, and that the distribution of the variable u is
compatible with a Tracy-Widom distribution.

These results are consistent with the conjecture [21,43]
that in the strongly localized phase, where the expansion in
nonrepeating paths is best controlled, the Anderson model
in dimension d belongs to the same universality class of the
directed polymer in dimension 1 + D, with D = d − 1. In
particular, the conjecture implies that in the limit of large
r the distribution of ln g has the scaling form (40), with
ω(d) coinciding with the droplet exponent [44] in 1 + (d − 1)
dimensions (which is exactly known [45] to be equal to 1/3 for
D = 1), and u having the same distribution of the fluctuations
of the free energy in the disordered phase of the polymer
(distributed according to the Tracy-Widom distribution [46,47]
in D = 1).

The values of the scaling exponents extracted from our data
do not compare well with the droplet exponents ω(D = d − 1)
of the DP; see Table I. Curiously, they compare within
errors with ω(D + 1). We do not have an explanation for
this curious behavior, and we leave its analysis for future
work. Broadly speaking, the discrepancies with respect to
the directed polymer results are generated by the fat tail of
the distribution of the path amplitudes in Eq. (32), produced
by the arbitrarily small energy denominators. It might be
that the finite-size effects are more pronounced in the case
of unbounded denominators. On the other hand, it is quite
natural to expect that the models of nonrepeating paths with
bounded amplitude considered in Ref. [35] exhibit a stronger
dependence on the dimensionality, due to the fact that the
domination by one single path is less pronounced in that case.
We comment more on this point in Sec. IV.

C. Heisenberg model with random fields

In order to test the forward approximation on a many-body
problem, we consider an XXZ spin-1/2 chain in random
magnetic field,

H (t) = −
L∑

i=1

his
z
i − �

L∑
i=1

sz
i s

z
i+1 − t

L∑
i=1

(
sx
i sx

i+1 + s
y

i s
y

i+1

)
,

(45)

where periodic boundary conditions are assumed (sα
1 = sα

L+1),
and the random fields hi are uniformly distributed in [−h,h].
This spin Hamiltonian (45) has been studied in a large
number of works [8,9,48–54], in which numerical evidence
of the existence of a localization-delocalization transition is
provided, mainly based on exact diagonalization results. The
critical disorder is estimated [17] to be hc � 3.72(6) for states
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FIG. 8. Graph corresponding to the configuration space of the
XXZ spin chain, see Eq. (45), of total length L = 6 and with periodic
boundary conditions. Each site in the graph is associated with a
product state in the basis of sz

i operators. Only sites corresponding
to states with zero total spin are represented. The initial Néel state
|↓↑ . . . 〉 and the final, totally flipped state |↑↓ . . . 〉 are highlighted
with circles. The red, dashed edges form one of the shortest paths
connecting the two states, of length L/2 = 3.

in the middle of the energy band and parameters t = 1 and
� = 1.

As mentioned in the Introduction, the many-body problem
can be seen as a single particle hopping problem in the
“configuration space.” The latter is composed of the 2L product
states in the basis of sz

i , which span the full Hilbert space
and diagonalize H (0). We denote these basis states with |n〉,
and refer to them as the “computational basis.” The mapping
to a hopping problem is obtained by interpreting each state
|n〉 as a vertex n of a graph, with associated random energy
En defined by H (0)|n〉 = En|n〉. The third term in Eq. (45)
provides the hopping between different sites, thus defining the
geometry of the graph. Note that due to spin conservation,
the full configuration space, and consequently the graph, are
partitioned into disjoint sectors corresponding to different
total spin; we restrict to the sector of total spin equal to
zero, corresponding to a connected graph with L!/[(L/2)!]2

vertices. See Fig. 8 for a pictorial representation of the graph
for L = 6.

The effective hopping problem can be analyzed using the
procedure set up in Sec. II A: the amplitude �α of an eigenstate
of the effective single particle problem is given in forward
approximation by

�α(n2) =
∑

p∈spaths(n1,n2)

∏
n∈p

t

En1 − En

, (46)

where it is assumed that the eigenstate satisfies �α(n) → δn,n1

for t → 0.
In the many-body language, Eq. (46) provides the ex-

pression of the coefficients of the eigenstates of (45) in the
computational basis, to lowest order in the coupling t . The
exponential decay of the coefficients implies localization in
the configuration space, meaning that the full many-body

eigenstates are effectively a superposition of product states
which differ only by configurations distant O(1) from the
initial configuration. The two main consequences of this
structure of the wave function are that they have significantly
less entanglement than ergodic states [9,50,55] and that, using
Kubo’s formula for linear response [16], one can prove that
they cannot support transport on macroscopic distances.

Similarly to the Anderson case, we fix an initial configura-
tion of spins and we look at the amplitude in perturbation the-
ory on the most distant, fully flipped configuration. In particu-
lar, we fix the localization center to be the site correspondent to
the Néel state |n1〉 = |↓↑ . . . 〉, and consider the wave function
amplitude on the site corresponding to the fully flipped Néel
state |n2〉 = |↑↓ . . . 〉. These two sites n1,n2 are connected by
2(L/2)! paths on the graph, of length r = L/2 each.

By means of the transfer matrix we compute the rescaled
amplitude

Zr (h) ≡ ln|�r |2
2r

(47)

for different disorder strength h, with �r given by (46). We
consider spin chains of size 6–20 with hopping and interaction
constants respectively t = 1 and � = 1, and h = 1–6. Note
that despite that the general framework is the same as in
the Anderson problem, the transfer matrix calculation is
by no means identical; indeed, in the many-body case the
energies associated with the different graph vertices are a
linear combination of the independent random fields, and are
thus correlated. Moreover, the number of paths connecting two
sites proliferates with the size of the chain L, with a scaling
that is faster than exponential. These paths present correlations
that are much stronger with respect to the Anderson problem,
as we shall discuss in more detail in Sec. IV.

1. Distribution of the wave function amplitudes
and critical disorder

In Fig. 9 we show the probability density of Zr (h) for a
chain of length L = 20 and different values of h. Since in the
many-body case it is not possible to simplify the dependence

FIG. 9. Probability density of the random variable Zr (h) defined
in Eq. (47), for an XXZ spin chain of length L = 20 (corresponding
to r = 10) and different values of disorder h. Each curve is obtained
with 3×103 realizations.
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FIG. 10. Extrapolated value of the mean 〈Z∞〉 of the variable
defined in Eq. (47). The crossing with 0 signals the many-body
localization/delocalization transition for t = 1 [see Eq. (48)]. The
error bars are obtained from the fitting procedure (see inset). The
resulting transition value is hc = 4.0 ± 0.3. Inset: Finite-size scaling
of 〈r Zr〉 with the distance r between the Néel states n1 and n2. The
plot corresponds to h = 1. The fit is linear with an r−1 correction, see
Eq. (49), with parameters c1 = −7.2 ± 0.4, 〈Z∞(2)〉 = 1.23 ± 0.02,
and c2 = 8.8 ± 0.7. The finite-r values for the mean are obtained
over at least 104 realizations for r < 7 and at least 2×103 realizations
for r � 7.

on the disorder strength h, the criterion for the transition reads

〈Z∞(hc)〉 = − ln t, (48)

where 〈Z∞(h)〉 is the extrapolated value of the average of
(47) for fixed h. Plots of 〈Z∞(h)〉 are given in Fig. 10. Here
〈Z∞(h)〉 is extrapolated from the finite-size values using the
fitting function

r 〈Zr (h)〉 = c1 + 〈Z∞(h)〉 r + c2 r−1. (49)

For t = 1, the critical point hc is estimated from the condition
〈Z∞(hc)〉 = 0. The resulting value is hc = 4.0 ± 0.3, which
is, as expected, larger than the result derived with exact
diagonalization. Notice also that the corrections ∝r−1 are
consistent with the intuition that the ωFA = 0 is the correct
mean-field scaling for MBL.

As we discuss in Sec. IV, in the many-body case the
sum (46) is no longer dominated by a single path. Thus,
the algorithm for the best path is not applicable in this
context, and the limited system sizes accessible with the
transfer matrix do not allow us to investigate whether a
scaling form exists also for (47) in the limit of large r . For
the available system sizes, the distributions of the rescaled
variables Z̃r (h) = [Zr (h) − 〈Zr (h)〉]/σZr (h) do not seem to
collapse to a unique curve, and the scaling of the variances
σ 2

Zr (h) with r appears to be compatible with a power law, but
with exponent depending on the disorder strength h. However,
a more refined numerical analysis is necessary to draw a
conclusion on the asymptotic behavior.

2. Divergent length scales and critical exponents

Figure 11 shows the behavior of the probability of reso-
nances P (Zr (h) > − ln t) as function of the distance between
the Néel states. As expected, the r dependence changes

FIG. 11. Probability of resonances P (Zr (h) > − ln t) as a func-
tion of the distance r between the two Néel states n1 and n2, for
t = 1. Asymptotically, the probability reaches zero exponentially in
the localized phase and 1 in the delocalized phase. We average over
104, 5×103, and 3×103 realizations for r � 8, r = 9, and r = 10,
respectively; the plotted values of the disorder h are h = 1 (points),
h = 2 (squares), h = 3 (diamonds), h = 4 (upward triangle), h = 5
(downward triangle), and h = 6 (circle). Linear and exponential fits
in the delocalized and localized regions respectively are plotted as
continuous lines; see Eqs. (50) and (51).

with the disorder: the probability decays to zero at large h,
and increases towards 1 for the smaller h. We expect the
convergence to be exponential in r on both sides of the
transition; however, the exponential behavior is not clearly
detectable in the delocalized phase, due to the few accessible
system sizes. For h < hc we extract a length scale l(h) by
fitting the curves in Fig. 11 with the function

P (Zr (h) > 0) = a2(h) + r

l(h)
+ b(h)

r
. (50)

In the localized phase we perform instead the exponential
fit:

P (Zr (h) > − ln t) = a1(h)exp

(
− r

l(h)

)
. (51)

The length scales l(h) extracted with this procedure are shown
in Fig. 12, together with the power-law fit l(h) = c|h − hc|−ν .
The fit is performed separately for h < hc and h > hc,
resulting in an exponent close to 1 in both cases (see Fig. 12
for details). Note the asymmetry of the curve with respect
to hc, which indicates that at fixed |h − hc| the typical
distance to find a resonance in the delocalized phase is larger
than the localization length at the corresponding value of
disorder in the localized phase. A possible consequence of
this phenomenon, which occurs also in the Anderson model
(see Fig. 7), could be a large “critical region” in the dynamics
in the delocalized phase.

IV. THE STRUCTURE OF THE DOMINATING PATHS

As mentioned in Sec. III B, the wave function amplitudes
in FA can be interpreted as the partition function for a
directed polymer in random medium. However, a relevant
difference is that while the weight associated with the polymer
is bounded from above [32], the single factors in Eq. (33)
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FIG. 12. Divergence of the length scales l(h) extracted from the
fits of the probability of resonances as a function of r . The vertical
dashed line indicates the critical value hc obtained in Fig. 10. The
dotted curve is a power-law fit of the form c|h − hc|−ν , resulting in
a critical exponent νL = 1.12 ± 0.06 for h < hc and νR = 1.1 ± 0.2
for h > hc.

are unbounded, with diverging average. As a consequence,
the strongly localized phase in the Anderson model (where
the FA is best controlled) always corresponds to a “frozen”
phase of the directed polymer, in which most of the weight in
the total sum (12) is given by one single path. An interesting
question [56] is whether the freezing phenomenon persists in
the delocalized phase in some form, and what this implies for
the structure of the eigenstates close to the transition [22,57].

In this section, we compare the statistics of the wave
function amplitudes in FA with that of the optimal path, i.e.,
the path with maximal amplitude, both for the single-particle
problem and for the XXZ chain. We show that while in
the first case the full sum is strongly dominated by the
extremal path amplitude, in the many-body case most of
the paths have comparable amplitude. However, the much
stronger correlation between them gives rise to nonnegligible
interference effects, resulting in strong cancellations.

A. The single-particle case

For the finite-dimensional case, we compute the amplitude
ω∗

r of the optimal path p∗ dominating the sum (12) by means
of the Dijkstra algorithm [58], a graph-search algorithm that
determines the path minimizing a given cost function. We
consider a directed cube (such as the one in Fig. 1) and assign
a positive cost χ to each directed edge 〈i,j 〉:

χ (i,j ) ≡ ln|εj | − min
k

{ln|εk|}. (52)

The total cost of a path p is the sum of the costs of the edges
belonging to it, and the path p∗ with maximal amplitude
is the one minimizing the total cost function. In order to
compare with the transfer matrix results, we compute the ratio
between ω∗

r and the full sum (32) computed via the transfer
matrix technique, for the same given disorder realization. The
distribution of the ratios turns out to be very narrowly peaked
around 1. Figure 13 displays its average as a function of the
length of the paths r for d = 3, which is extremely close to 1,
uniformly in the path length.

FIG. 13. Average ratio between the dominating path weight ω∗
r

computed with the Dijkstra algorithm, and the sum in Eq. (32)
computed using a transfer matrix technique. The ratio is taken
between values corresponding to the same disorder realization.
The plot corresponds to d = 3, and each point is averaged over
3×104 disorder realizations. Similar results are obtained for higher
dimensionality, for those r accessible with the transfer matrix
technique. The standard deviation error bars are within the point
size.

As a further check of the agreement between the values
computed with the two methods, we plot in Fig. 6 the r

dependence of the probability (15) with δ = 0, determined
with the substitution |ψr | → ω∗

r . The data are plotted as points,
which are almost indistinguishable from the transfer matrix
results (squares). This indicates that the statistics of distant
resonances is fully captured by the optimal path. Thus, in
the single-particle case the correlation between different paths
does not play a relevant role, since the sum is dominated by
the extremum, as would happen for independent random vari-
ables with fat-tailed distribution. Based on this observation,
the numerical analysis outlined in the previous sections can
be carried out for much bigger system sizes with respect to
the ones accessible with the transfer matrix technique, since
the Dijkstra algorithm has lower complexity than the transfer
matrix (indeed, the time complexity is ∼O(e + v ln v) and the
space complexity is ∼O(v2), where v is the number of vertices
and e is the number of graph edges).

We perform the same analysis also for the modified forward
approximation discussed in Ref. [35], by taking the energy de-
nominators uniformly distributed in [−1,−W−1] ∪ [W−1,1]
in d = 3 for two values of the cutoff, W = 25 and W = 35.
We find that in this case the ratio between the maximal path
and the transfer matrix result departs from one for increasing
r . This suggests that more than one path dominates the transfer
matrix result. It is natural to expect that in this case the number
of dominating paths depends on the geometry of the system,
thus introducing a stronger dependence on the dimensionality;
see also the comments in Sec. III B.

For the case of unbounded denominators, we compute
the inverse participation ratio (IPR) of the edge weights
contributing to ω∗

r , for εi ∈ [−1,1] (i.e., W = 2). We define

IPR =
(∑

i ln|εi |
)2∑

i(ln|εi |)2
, (53)
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FIG. 14. Probability distribution ρ(ε) of the energy denominators
along the optimal path; see Eq. (55). The plot corresponds to d = 3
and r = 210. The dashed red line is the fitting function of Eq. (54),
with fitting parameters cr = −0.95 ± 0.04, br = 1.04 ± 0.03, and
ar = 0.472 ± 0.005. Very similar results are obtained for higher
dimensionality. Inset: Plot of the exponents ar in the fitting function
of Eq. (54), as a function of r . Due to the absence of a theoretical
reasoning for the finite-size scaling, we fit the curve considering
logarithmic and 1/

√
r corrections. The green small-dashed curve

is a fitting function of the form a + c/ ln(r), with fit parameters
a = −0.73 ± 0.05 and c = −1.4 ± 0.3; the red large-dashed curve
is a fitting function of the form a + c/

√
r , with fit parameters

a = −0.57 ± 0.02 and c = −1.4 ± 0.3. The asymptotic value a

obtained with the logarithmic fitting function is compatible with the
solution of Eq. (56) for d = 3.

where i labels the sites belonging to the optimal path p∗. We
find that the disorder-averaged IPR scales linearly with the
length of the path r , indicating that an extensive (in r) number
of edges contributes to the total path weight, and cooperate
to produce the atypically big path weights dominating (32).
Figure 14 shows the distribution of the absolute value of the
energies along the optimal path for W = 2, d = 3, r = 210,
and εa = 0. The fitting function has the form

ρr (ε) = cr + br |ε|ar . (54)

The power-law behavior is consistent with the considerations
in Ref. [41]. Adapting their reasoning to the finite dimensional
case, one can argue that asymptotically in r (and under the
hypothesis of independent paths) the biased energy distribution
along the optimal path has the form

ρ(ε) = 1 − 2x

|ε|2x
, (55)

with x solving the d-dependent equation

ln

(
d

1 − 2x

)
− 2x

1 − 2x
= 0. (56)

Fitting the r dependence of the coefficients cr ,br ,ar one finds
that the asymptotic limits are in agreement with (55); for details
see the inset of Fig. 14.

FIG. 15. Average IPR* of the paths, Eq. (57), as a function of the
number of paths N∗ = 2(L/2)! for random spin chains of different
lengths L. The IPR* is linear in the total number of paths.

B. The many-body case

When performing the same type of analysis for the
Heisenberg chain, we find that the statistics of the sum (46) is
not well reproduced by the optimal path alone: the distribution
of the ratios between the full sum and the optimal path is very
wide and peaked at values that are far from 1. Thus, despite that
also in this case the amplitudes of the single paths are fat-tail
distributed, there is not a single one dominating. Instead, we
find that the average IPR* of the path amplitudes (which we
denote with ωp)

IPR* =
(∑

p ωp

)2∑
p ω2

p

(57)

scales linearly with the total number of paths N∗ = 2(L/2)!,
indicating that there are factorially many (in the length of
the chain L) paths having amplitudes that are comparable in
absolute value (see Fig. 15). This is a signature of the strong
correlations between the paths, which is not surprising in view
of the many-body nature of the model. Following Ref. [16],
one can argue that the strongest correlations are among those
paths associated with processes in which the same spin flips
occur, but in different order: the different orderings of the flips
produce different energy denominators in Eq. (46), and thus
different path amplitudes; however, the resulting terms are
correlated, and one can expect that for those realizations of the
random fields producing one particularly large path weight,
the other ones (related to it by permutation of the order of
the spin flips) will also have a large amplitude in absolute
value. However, in the sum (46) the paths contribute with well
defined relative signs, leading to cancellations between these
factorially many terms (see Ref. [16] for an explicit calculation
for a model of interacting fermions), which are fully taken into
account only with the transfer matrix method.

V. CONCLUSION

In this work we have discussed the advantages and the lim-
itations of the forward approximation applied to both single-
and many-body quantum disordered systems. In particular,
the FA has been used to obtain an expression for the wave
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functions, that can be computed by means of a transfer matrix
technique. The statistical analysis of the wave functions allows
us to determine the critical values of the disorder (very accurate
in large d), the critical exponents of the localization length
(which are compatible with mean field), and the universal
distribution of the eigenfunctions’ coefficients.

For the single-particle case, the amplitudes of the wave
functions in FA turned out to be very well approximated by
only one path, the dominating path: this has been exploited
to investigate larger system sizes with respect to the ones
accessible with the transfer matrix (the algorithm that com-
putes the best path runs in time linear in the number of edges
of the underlying graph, and is not as memory-demanding
as the transfer matrix of shift-invert exact diagonalization).
The extremely good agreement (within statistical error) of the
predicted critical values for the disorder for d � 5 suggests
that the approximation should be predictive also for the
properties of the wave functions at the critical point. We
have not investigated in details these implications, but we
foresee the wave functions to have a sparse structure which
is similar to that discussed in high-coordination Bethe lattices
[22]. The strong similarities with the problem of directed
polymers in random medium have also been addressed;
however, from the statistical analysis it emerges that the
scaling exponents describing the fluctuations of the wave
functions are non-mean-field, but also not equal to those of
the directed polymer. Moreover, the limiting distribution of
the appropriately rescaled wave functions seems to depend
more weakly on the dimensionality with respect to the directed
polymer case.

In the many-body problem there is no concentration of
amplitude on a small number of paths, but there are strong
cancellations between them: as a result, the full sum over
factorially many paths is only exponentially large (or small)
in the system size. The correlation between the paths has been
discussed in detail in Ref. [16], and this work can be interpreted
as a numerical test of the claims in that work. For the XXZ
chain with random fields, the critical value predicted within
the approximation (hc = 4.0 ± 0.3) is very close to the most
updated result obtained with exact diagonalization; thus, this
tool furnishes an alternative route to exact diagonalization, that
can be applied to significantly larger system sizes. We leave
to future work the question of how to incorporate higher-order
corrections in the FA within the transfer matrix scheme, and
how they affect the critical exponents, and the accuracy of the
results.

As a concluding remark, we would like to briefly comment
on the nature of the FA as a mean-field approximation for
Anderson localization. For certain, the value of the critical
disorder Wc for the onset of localization grows indefinitely
with d, and in high d the hopping t becomes an almost
negligible perturbation at the transition. The fact that the
error in Wc essentially disappears around d � 6 is a strong
indication of this. This feature is quite peculiar, since in
ordinary, second-order phase transitions the critical exponents
above the upper critical dimension are correctly reproduced by
the mean-field approximation, but the location of the transition
(e.g., the critical temperature) is not. In this sense the locator
expansion (that to lowest order reduces to the FA considered
in this work) becomes a better suited candidate for a mean

field than the 2 + ε expansion of the nonlinear supersymmetric
sigma model (NLSσM) [59]. It is plausible that there is a
field-theoretical description of the FA which can be put in
direct relation with the NLSσM; this is an obvious direction
in which to continue this work. In addition, the relation with
the Bethe lattice results can be further investigated, given that
the critical Wc predicted by the FA does not correspond to that
of a Bethe lattice of any (integer) coordination number.
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APPENDIX: PROBABILITY DENSITY OF Zr

An estimate for the probability density of Zr can be
obtained making use of the fact that the sum over (33) is
dominated by the single path with maximal weight:

Zr ≈ max
p∈spaths

⎧⎨
⎩−1

r

∑
i∈p

ln|ε′
i |
⎫⎬
⎭. (A1)

If the correlations between the different path weights are
neglected, the calculation is similar to the one performed for
the Bethe lattice case. In particular, one finds for the cumulative
function of Zr the following expression:

P (Zr < a) = exp

[
Nr ln

(
1 − 1

(r − 1)!

∫ ∞

r(a−ln 2)
t r−1e−t dt

)]
,

(A2)

where Nr ∼ dr is the total number of paths on which the
maximum is taken. This implies the following form for the
probability density of Z′

r = Zr − ln 2:

pr (z′) = Nrr
r

(r − 1)!

e−r(z′−ln z′)

z′[1 − Ir (z′)]
exp{Nr ln[1 − Ir (z′)]}, (A3)

where we introduced the monotonic decreasing function

Ir (z′) = 1

(r − 1)!

∫ ∞

rz′
t r−1e−t dt. (A4)

The typical value of Z′
r , denoted z∗

r , is defined by the
equation

Nr Ir (z∗
r ) = Nr

rr−1

(r − 1)!

∫ ∞

z∗
r

t r−1e−rt dt = 1. (A5)

The solutions of (A5) approach a finite limit z∗ for r → ∞,
which is related to the critical value of disorder by z∗ =
ln[Wc/(2t)], as previously discussed. Using that Nr ∼ dr

and computing the integral in Eq. (A5) with a saddle point
calculation (assuming z∗ > 1), one recovers the condition (28)
for Wc, with the substitution K → d.

For increasing r the probability density of Z′
r peaks at

the typical value, with tails that approach zero in the limit
r → ∞. In particular, for z′ > z∗

r the decay of the tail is
exponential in r . Indeed, in this regime the product Nr Ir (z)
is itself exponentially decreasing with r; thus, the rightmost
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exponential in Eq. (A3) rapidly converges to 1, and the
distribution pr (z′) approaches zero with a tail of the form

pr (z′) ∼ e−r[z′−ln z′−ln(de)]+o(r). (A6)

When z′ becomes smaller than the typical value z∗
r , the product

Nr Ir (z′) increases exponentially. Since for large r the integral
Ir (z′) is still exponentially small for all z′ > 1 + O(1/r), one
can still set ln[1 − Ir (z′)] ∼ −Ir (z′) ∼ exp[−rz′ + r ln(ez′) +
o(r)]. Thus, in this regime the probability density of Z′

r decays
to zero much faster, double exponentially with r:

pr (z′) ∼ exp(−dr e−rz′+r ln(ez′) + O(r)). (A7)

Note that (for r large enough) the interval in which 1 < z′ <

z∗
r does not shrink to zero for d � 3, given that the value

z∗ obtained from the condition (A5) is always bigger than
1. When z′ approaches one, the probability in Eq. (A4) is
no longer a large deviation probability; i.e., it is no longer
exponentially small in r: the term ln[1 − Ir (z′)] approaches a
constant function of z′, and the main scaling is given by the
factor dr .

Finally, exactly at z′ = z∗
r , using (A5) and performing

the integral with an integration by parts, one finds that the
probability density can be written as

pr (z∗
r ) = r

1 − d−r

[
1 +

r−1∑
n=1

(r − 1)!

(r − 1 − n)!rn
(z∗

r )−n

]−1

×exp

(
−1 − 1

2dr
− 1

3d2r
+ · · ·

)
, (A8)

which diverges like r when r → ∞.

Given the tails of the distribution of Zr computed in this
approximation, it is immediate to derive the asymptotic decay
of the probability of resonances in the localized phase. Indeed,
for W > Wc, the probability (35) is is a large deviation for Zr .
Making use of (A6) we find

P

(
Zr > ln

W

t

)
=

∫ ∞

ln ( W
2t )

e−r[z′−ln z′−ln(de)]+o(r)dz′

= exp

(
− r

l(W )
+ o(r)

)
(A9)

with

1

l(W )
= ln

(
W

2tde

1

ln (W/2t)

)
. (A10)

Thus, within this approximation for W approaching Wc

from above one finds

l(W ) ∼ Wc

W − Wc

, (A11)

and thus the length scale diverges at the transition with a critical
exponent equal to 1.

Similarly, for 2te < W < Wc, making use of (A2) and of
(A7) we find

P

(
Zr < ln

(
W

t

))
≈ exp

(
−

[
2tde

W
ln

(
W

2t

)]r

+ O(r)

)

= exp(−e−r/ l(W ) + O(r)). (A12)
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